
Autonomous Agents and Multi-Agent Systems (2018) 32:822–860
https://doi.org/10.1007/s10458-018-9395-y

A class of iterative refined Max-sum algorithms via
non-consecutive value propagation strategies

Ziyu Chen1 · Yanchen Deng1 · Tengfei Wu1 · Zhongshi He1

Published online: 25 September 2018
© The Author(s) 2018

Abstract
As an important technique to solve distributed constraint optimization problems, Max-sum
has drawn a lot of attention and successfully been deployed in real applications. Unfortu-
nately, Max-sum fails to converge in cyclic problems and usually traverses states with low
quality. Max-sum_AD and Max-sum_ADVP were proposed to guarantee the single phase
convergence and the cross phase convergence respectively, and greatly improve the solution
quality of Max-sum. However, the solution quality is closely related to the timing for start-
ing value propagation in Max-sum_ADVP. In other words, low-quality initial assignments
will lead to a poor result. In this paper, we prove that value propagation could restrict the
exploration ability brought by Max-sum and eventually makes Max-sum_ADVP equivalent
to a sequential greedy local search algorithm. For getting a balance between exploration and
exploitation, several non-consecutive value propagation strategies are proposed to relax the
restriction caused by value propagation: single-side value propagation which executes value
propagation and Max-sum_AD in an interleaved way, probabilistic value propagation which
performs value propagation stochastically and hybrid belief/value propagation where agents
perform Max-sum_AD and value propagation in one round. We illustrate that agents in our
algorithms can make decisions beyond local functions. Our empirical evaluations demon-
strate the superiority of our methods over Max-sum and its variants. It also can be found that

The paper is an extension to our AAMAS paper [3]. Beside execution examples and an extension to
Max-sum_ADSSVP, we also present three algorithms that can substantially suppress the cost fluctuation.

This research is funded by Chongqing Research Program of Basic Research and Frontier Technology (No.
cstc2017jcyjAX0030), Fundamental Research Funds for the Central Universities (No. 2018CDXYJSJ0026)
and Graduate Research and Innovation Foundation of Chongqing, China (Grant No. CYS18047).

B Ziyu Chen
chenziyu@cqu.edu.cn

B Yanchen Deng
dyc941126@126.com

Tengfei Wu
wutengfei0404@163.com

Zhongshi He
zshe@cqu.edu.cn

1 College of Computer Science, Chongqing University, Chongqing 400044, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-018-9395-y&domain=pdf

Autonomous Agents and Multi-Agent Systems (2018) 32:822–860 823

our methods are independent of the value propagation timing which is a major concern in
Max-sum_ADVP.

Keywords DCOP · Incomplete algorithm · Max-sum · Value propagation

1 Introduction

Distributed constraint optimization problems (DCOPs) [12] are a fundamental model for
multi-agent system (MAS), which requires agents to coordinate their decisions to optimize a
global objective. Since they can capture essential MAS aspects, DCOPs are widely applied
into various MAS applications such as task scheduling [6,31], sensor networks [36], power
networks [26] and so on.

According to whether they guarantee to find the optimal solution, algorithms for DCOPs
can generally be divided into complete algorithms and incomplete algorithms. Search-based
complete algorithms [8,13,16,17,33] perform distributed searches to exhaust the entire solu-
tion space. On the other hand, complete inference-based algorithms [23–25,32] employ
dynamic programming to solve DCOP. However, since DCOPs are NP-Hard, complete algo-
rithms suffer from an exponentially increasing coordination overhead (e.g., message number
or memory consumption) which prohibits them from scaling up to large real application
problems. In contrast, incomplete algorithmsusually require little computation and communi-
cation to find suboptimal solutions, which are successfully applied into practical applications.
Thus, considerable research efforts have been made to develop incomplete algorithms.

Incomplete algorithms generally follow three strategies, i.e., local search, sampling and
inference. Local search algorithms [9,10,14,30,36] usually perform in a synchronous way.
Instead of systematically exploring the entire solution space, agents in local search algorithms
usually try to optimize solutions via iterative localmoves. Sampling-based algorithms [18,20]
sample the search space to approximate a function as a product of statistical inference.

Max-sum [7] is an important inference-based algorithm that employs belief propagation
to propagate and accumulate utilities through the whole factor graph. Specifically, each agent
in Max-sum maintains belief about utility for each possible assignment, and keeps updating
its beliefs based on the messages received from its neighbors. Agents in Max-sum make
decisions by choosing the assignments with the highest utility. Unfortunately, Max-sum only
guarantees to converge in cycle-free problems which are very rare in realistic applications.

Bounded Max-sum (BMS) [27] was proposed to overcome the pathology by removing a
subset of edges from a cyclic factor graph to make it acyclic. And then Max-sum is used to
solve the relaxed problem, providing a bound on the approximation of the optimal solution.
Some improved algorithms [28,29] further enhance BMS by providing tighter approximation
ratios.

Different than removing dependencies in BMS algorithms, Max-sum_AD [40] makes a
factor graph acyclic by strictly controlling the direction ofmessage-passing. That is, instead of
sendingmessages to every neighbor inMax-sum, nodes inMax-sum_ADonly sendmessages
to ones ordered after them.And themessage-passing direction is alternated after the algorithm
converges. However, the algorithm still cannot guarantee the cross phase convergence and
usually produces low-quality solutions.

Max-sum_ADVP [40] further enforces the cross phase convergence and monotonicity by
performing value propagation on each variable nodes. That is, variable nodes propagate both
their beliefs and the assignments they choose, and function nodes consider the assignments

123

824 Autonomous Agents and Multi-Agent Systems (2018) 32:822–860

they receive to produce messages. Nevertheless, the exploitative nature of Max-sum_ADVP
restricts the solutions that are ultimately found. Thus, several value exploration methods and
message exploration methods have been proposed in [39] to alleviate the problem. While
value exploration methods attempt to expand the set of candidate solution, message explo-
ration methods enable agents to take advantage of the differing balance of exploration and
exploitation in each variant by executing different versions ofMax-sumalgorithms in an inter-
laced way. However, according to the experimental results in [39], only message exploration
methods slightly improve the solution quality of Max-sum_ADVP.

Our study tries to balance exploration and exploitation in another perspective. We start by
observing that agents in Max-sum_ADVP eventually get trapped in local optima, and fur-
ther establish the equivalence between Max-sum_ADVP and greedy local search algorithms
in terms of the decision-making strategy. Then instead of alternatively executing different
versions of Max-sum algorithms in [39], we focus on how to effectively balance exploration
and exploitation by providing fine-grained control on executing belief propagation and value
propagation. Specifically, our work contributes to state-of-the-art Max-sum algorithms in the
following aspects:

– To avoid Max-sum to be a pure exploitative one, we propose three Max-sum algorithms
with novel non-consecutive value propagation strategies which can balance explo-
ration and exploitation: Max-sum_ADSSVP, Max-sum_ADPVP and Max-sum_HBVP.
Max-sum_ADSSVP performs a single-side value propagation phase every two conver-
gences. That is, when the current message-passing order is backward direction, the
algorithm behaves like Max-sum_AD to perform belief propagation to find potential
optima, otherwise it enables value propagation to guarantee solution quality. Max-
sum_ADPVP remedies the problem by perform value propagation stochastically, while
belief propagation and value propagation are performed simultaneously in one round in
Max-sum_HBVP.

– We empirically evaluate our algorithms on various DCOP benchmarks. Our study shows
that our proposed algorithms outperform Max-sum and its variants, including Max-
sum_AD, Max-sum_ADVP, Max-sum_ADVP with exploration methods and Damped
Max-sum. It also can be observed that in Max-sum_ADSSVP, there are remarkable
decreases of amplitudes of cost fluctuations in the transitions from value propagation
phases to belief propagation phases, which indicates that the belief propagation phase
and the value propagation phase can collaborate with each other to iteratively eliminate
invalid assumptions. Moreover, it is worth mentioning that all our proposed algorithms
have similar performances under different value propagation timings, which indicates
that our methods are robust against the value propagation timing and thus overcome the
drawback of timing selection in Max-sum ADVP [40].

The rest of the paper is organized as follows. In Sect. 2, we briefly review related work.
The formal definition to DCOPs is presented in Sect. 3. The preliminary algorithms including
Standard Max-sum, Max-sum_AD and Max-sum_ADVP can be found in Sect. 4. In Sect. 5,
we analyse the limitation of value propagation and present the detail of our proposed algo-
rithms: Max-sum_ADSSVP, Max-sum_HBVP and Max-sum_ADPVP. Section 6 presents
the empirical evaluation to our proposed methods and Sect. 7 concludes the paper and gives
the future work.

123

Autonomous Agents and Multi-Agent Systems (2018) 32:822–860 825

2 Related work

Complete algorithms for DCOP can be broadly divided into search-based algorithms and
inference-based algorithms. Search-based complete algorithms includingADOPT [16], Bnb-
ADOPT [33], AFB [8], ConFB [17], PT-FB [13], etc., perform distributed searches to
explicitly enumerate all possible combinations to find the optimal solution, while inference-
based algorithms employ dynamic programming to optimally solve DCOP. As a distributed
implementation of bucket elimination algorithm [5], DPOP [23] is an important inference-
based algorithm that performs dynamic programming on a pseudo tree, starting with a phase
of utility propagation. In the phase, each agent joins the received utilities from its children
with its local constraint utilities, eliminates its dimensionality from the joint utilities by
calculating the optimal utility for each combination of the remaining dimensionalities, and
propagates the reduced utilities to its parent. After that, a value propagation phase starts from
the root agent. In the phase, each agent selects its optimal assignment based on the utilities
calculated in the previous phase and the assignment received from its parent, and broadcasts
its assignment to its children. The algorithm terminates when all agents have chosen their
optimal assignments. DPOP requires a linear number of messages, but its memory consump-
tion is still exponential in the induced width. Thus, Petcu and Faltings presented ODPOP
[24] and MB-DPOP [25] to trade runtimes for smaller memory requirements. In addition,
Action-GDL [32] was proposed to generalize DPOP by executing over a distributed junction
tree.

Local search algorithms including DBA [9], DSA [36], MGM [14] are typical incomplete
algorithms and usually perform in a synchronous way. In those algorithms, agents keep
exchanging self states (i.e., assignments or gains) with their neighbors, and then determine
whether to replace their assignments based on the received states from their neighbors.
The difference among local search algorithms mainly lies on the assignment replacement
strategy. For example, agents inDSAdecide to replace their assignments bymaking stochastic
decisions in every iteration, while only agents who hold themaximumgains among neighbors
can replace their assignments in MGM. Recently, GDBA [30] was proposed to adapt DBA
which is designed to solve distributed constraint satisfaction problems (DCSPs) [34], to
general-valued DCOPs by formalizing the manner of computing effective costs based on
original costs andmodifiers, the definition of constraint violation, and the scope of changes to
themodifiers during breakouts. To improve the solution of local convergence, KOPT [10] was
proposed to produce local optimal solutions which are guaranteed to be within a predefined
distance from the global optimal solution by coordinating the decisions of all agentswithin the
k-size coalition. Specifically, agents in each coalition transfer their constraints to a mediator
which performs a centralized complete search to find the best assignment for all agents within
the k-size coalition. Consequently, the algorithm eventually converges to a status called k-
optimal [21] ensuring that the solution quality cannot be improved if k agents or fewer change
their assignments.

Unfortunately, since agents might have suboptimal local assignments when a system is
in the optimal state, many local search algorithms cannot report the best solution they have
visited (i.e., they are not anytime algorithms [37]). Thus, an anytime local search (ALS)
framework [38] was proposed to cache the best solution explored so far by aggregating local
costs through a breadth-first tree. Besides, local search algorithms usually converge quickly
since agents only communicate their preferred states based on the current preferred states of
their neighbors. Therefore, Yu et al. proposed a scheme for local search algorithms, called

123

826 Autonomous Agents and Multi-Agent Systems (2018) 32:822–860

partial decision scheme (PDS) [35] to help agents to escape from premature convergences
by ignoring the assignments of their neighbors.

Sampling-based algorithms like DUCT [20] and D-Gibbs [18] are emerging incomplete
approaches to solve DCOP in recent years. Given a context a, an agent in DUCT first con-
structs a confidence bound for each value k in its domain, which is an optimistic estimate
of the optimal value for its subtree under context a and choice k, and samples the choice
with the lowest bound. However, memory requirement per agent in DUCT is exponential in
the number of agents, which makes it unsuitable for large real applications. Thus, Nguyen
et al. proposed a memory-bounded DCOP algorithm called D-Gibbs that maps a DCOP to
a maximum likelihood estimation (MLE) problem, and uses the distributed gibbs sampling
algorithm to solve it.

Max-sum algorithms are popular inference-based incomplete algorithms in which agents
communicate utilities instead of self-states. Bounded Max-sum [27], as a notable Max-sum
variant, attempts to overcome the non-convergence of Max-sum by removing edges from
a cyclic factor graph to make it acyclic. Specifically, the algorithm first shrinks the binary
dependencies which have the least impacts on the solution to unary functions by minimizing
the dependencies, which is called relaxation phase. Consequently, the algorithm transforms
a cyclic factor graph into a tree-structured graph, uses Max-sum to solve it, and provides a
bound on the approximation of the optimal solution. However, a large approximation ratio
in BMS reflects lack of confidence in the solution. Recently, improved bounded Max-sum
(IBMS) [28] was proposed to provide a tighter approximation ratio. Instead of only solving
a problem with minimized dependencies in BMS, IBMS also solves the maximized one and
selects the best result to calculate the approximation ratio. Nonetheless, all BMS algorithms
introduce errors in their relaxation phase, which prevents the algorithms from computing the
true optimal solution. ED-IBMS [29] and AD-IBMS [29] attempt to alleviate the pathology
by decomposing binary dependencies into unary functions.

Recently, Cohen et al. [4] investigated the effect of using damping within Max-sum when
applied intoDCOPs. Damping is a technique to increase the chances for convergence of belief
propagation by decreasing the effect of cyclic information propagation. It can be observed
that the Damped Max-sum with a high damping factor under the anytime mechanism can
outperform all other versions of Max-sum, as well as local search DCOP algorithms [4].

ADPOP [22] is an approximate version of DPOP, which allows the desired tradeoff
between solution quality and computational complexity. Specifically, the algorithm imposes
a limitmaxDims on themaximum number of dimensions in eachmessage.When the dimen-
sionality of an outgoing message exceeds the limit, the algorithm drops a set of dimensions
to stay below the limit. That is, the algorithm first selects a set of dimensions to be dropped
and then computes upper bound and lower bound respectively by eliminating those dimen-
sions from the utility. It is worth noting that the approximation only occurs in high-width
areas of a problem; for all the rest of the problem, where the dimensionality does not exceed
maxDims, optimal sub-solutions are still found.

Okimoto et. al [19] proposed a new incomplete algorithm based on a total ordering on
agents. The algorithm starts with generating a subgraph from an induced choral graph by
removing edges so that the induced width of the induced chordal graph obtained from the
subgraph is bounded by a parameter p. Then, a complete algorithm is used to solve the
reduced problems, producing a solution that guarantees the p-optimality, i.e., the solution
maximizes the rewards (or minimizes the cost) in the reduced problem.

123

Autonomous Agents and Multi-Agent Systems (2018) 32:822–860 827

3 Distributed constraint optimization problems

A distributed constraint optimization problem can be formalized with a tuple 〈A, X , D, F〉
such that:

– A = {a1, . . . , aq} is a set of agents.
– X = {x1, . . . , xn} is a set of variables. Each variable xi is controlled by an agent.
– D = {D1, . . . , Dn} is a set of finite variable domains. Each domain Di consists of a set

of allowable values for variable xi .
– F = { f1, . . . , fm} is a set of constraints, where a constraint fi is any function with the

scope (xi1 , . . . xik), fi : Di1 ×· · ·×Dik → R
+ which denotes howmuch cost is assigned

to each possible combination of values of the involved variables.

Without loss of generality, a solution to a DCOP is an assignment to all the variables that
minimizes the total cost, which is the sum of all constraints:

X∗ = argmin
x

∑

fi∈F
fi

where x = (x1, . . . , xn). To facilitate understanding, we assume that each agent has a sin-
gle variable and constraints are binary. Here, the term “agent” and “variable” can be used
interchangeably. A binary constraint is a constraint involving exactly two variables defined
as fi j : Di × Dj → R

+. Consequently, a solution to a DCOP can be formalized as

X∗ = argmin
di∈Di ,d j∈Dj

∑

fi j∈F
fi j (xi = di , x j = d j)

ADCOP can be visualized by a constraint graph where the nodes represent agents and the
edges represent constraints. Fig. 1a, b gives the constraint graph and the constraint matrices
of a DCOP which comprises of four agents and four constraints.

4 Algorithm preliminaries

4.1 StandardMax-sum

Max-sum is a GDL (generalized distributive law) [1] based message-passing algorithm oper-
ating on factor graphs [11]. A factor graph is a bipartite graph representation to a DCOP,

x4

x3

x2 x1

(a)

x1

x3 0 1

0 1 7
1 9 3

x3

x4 0 1

0 4 7
1 6 6

x2

x3 0 1

0 7 3
1 8 3

x2

x4 0 1

0 3 3
1 1 5

(b)

x4

x3

x2 x1

f34

f23

f24

f13

(c)

Fig. 1 A DCOP instance and its factor graph

123

828 Autonomous Agents and Multi-Agent Systems (2018) 32:822–860

which is composed of two types of nodes: variable nodes and function nodes. Function nodes
which represent constraints in a DCOP are connected only to variable nodes they depend on,
while variable nodes which represent variables in a DCOP are connected only to function
nodes they are involved in Fig. 1c presents a factor graph deriving from Fig. 1a.

Beliefs are propagated and accumulated through the whole factor graph via two types
of messages: query message (i.e., the message from a variable node to a function node)
and response message (i.e., the message from a function node to a variable node). When
computing a message to a function node f j , variable node xi sums up all the last messages
received from its neighboring function nodes except the target function node f j . Formally,
the message from xi to f j is a function qi→ j (xi) : Di → R such that:

qi→ j (xi) = αi j +
∑

n∈Ni\ j
rn→i (xi) (1)

where Ni\ j is a set of neighbor indexes of xi except the target function node f j and rn→i (xi)
is the message sent from function node fn to xi . In order to prevent entries in the message
from endlessly increasing in a cyclic graph, a constant αi j such that

∑

di∈Di

qi→ j (di) = 0 (2)

is chosen to normalize the message.
The message from a function node f j to a variable node xi contains the best cost for

each di ∈ Di under the current beliefs and the local function of f j . That is, the function
node f j minimizes the sum of its local function and all the last messages received from its
neighboring variable nodes except the target variable node xi , in terms of variables other than
xi .1 Formally, the message from f j to xi is a function r j→i (xi) : Di → R such that:

r j→i (xi) = min
x j \xi

⎡

⎣ f j (x j) +
∑

n∈N j \i
qn→ j (xn)

⎤

⎦ (3)

where N j is a set of indexes of neighboring variable nodes connecting to f j and x j\xi =
{xk : k ∈ N j\i} and x j is a vector of variables involved in f j .

When a variable node xi makes a decision, it first considers all messages it receives to
calculate the belief for each possible assignment. That is,

zi (xi) =
∑

n∈Ni

rn→i (xi) (4)

Then, xi will choose the value with the lowest cost according to zi . The procedure can be
formalized by

x∗
i = argmin

xi
zi (xi) (5)

4.2 Max-sum_AD

It is known that Standard Max-sum cannot guarantee to converge and usually produces
low-quality solutions when factor graphs are cyclic. Max-sum on an alternating DAG (Max-
sum_AD) was proposed to overcome the shortcoming by strictly controlling the nature of

1 We describe Max-sum as a minimization version to cope with the objective of DCOPs.

123

Autonomous Agents and Multi-Agent Systems (2018) 32:822–860 829

Fig. 2 An example of a directed
acyclic factor graph x4

x3

x2 x1

f34

f23

f24

f13

cyclic information propagation. Specifically, the algorithm makes a factor graph acyclic by
transforming it to a directed acyclic graph according to a predefined order and only permits
messages in the direction of each edge. In other words, nodes in Max-sum_AD only send
messages to nodes which are after them according to the directions. The directions of all
edges are periodically and synchronously reversed in order to make agents able to consider
all constraints they are involved in. Figure 2 gives an example of aDAGderiving fromFig. 1b,
and the pseudo code of Max-sum_AD can be found in Fig. 3.

The messages in Max-sum_AD are computed according to Eqs. (1) and (3), just like
Standard Max-sum. It should be noted that those computations involve all messages received
from neighbors rather than just upstream neighbors. In other words, a message is computed
by considering the messages from upstream neighbors received in the current phase and the
messages from downstream neighbors received in the previous phase, which enables cyclic
information propagation across phases and allows agents to accumulate information based
on all constraints in a DCOP.

An important property of Max-sum_AD is that it can guarantee the single phase conver-
gence. That is, the messages of all the nodes and the beliefs of all the variable nodes do not
change after a linear number of iterations in one direction where the number of iterations
actually depends on the diameter of the DAG.

4.3 Max-sum_ADVP

Although it can guarantee the single phase convergence, Max-sum_AD suffers from belief
ties and invalid assignment assumptions which prevent a variable node from making high-
quality decisions. To illustrate the phenomenon, let’s consider a graph-coloring problem
whose initial message-passing order is shown in Fig. 4. According to Max-sum_AD, the
messages sent in 4 iterations are shown as follows.2

Max-sum_AD
Iteration 1: x1 → f12 : [0, 0, 0] x1 → f13 : [0, 0, 0]
Iteration 2: f12 → x2 : [0, 0, 0] f13 → x3 : [0, 0, 0]
Iteration 3: x2 → f23 : [0, 0, 0]
Iteration 4: f23 → x3 : [0, 0, 0]
Beliefs: z1 = [0, 0, 0] z2 = [0, 0, 0] z3 = [0, 0, 0]
Assignments: x∗

1 = R x∗
2 = R x∗

3 = R

2 For sake of clarity and simplicity, we only show stable and unchanging outgoing messages here. In fact,
nodes in Max-sum_AD perform concurrently and each node sends messages to its downstream neighbors
every iteration. Besides, we also ignore the normalization to messages to make the trace more clear.

123

830 Autonomous Agents and Multi-Agent Systems (2018) 32:822–860

Algorithm 1: Max-sum AD(node n)

1 current order ← select an order on all nodes in the factor graph;
2 Nn ← all of n’s neighbouring nodes;
3 while no termination condition is met do
4 Nprev n ← {n̂ ∈ Nn : n̂ is before n in current order};
5 Nfollow n ← Nn\Nprev n;
6 for k iterations do
7 collect messages from Nprev n;
8 foreach n ∈ Nfollow n do
9 if n is a variable node then

10 produce message mn using messages received from
Nn\{n };

11 end
12 if n is a function node then
13 produce message mn using constraint and messages

received from Nn\{n };
14 end
15 send mn to n ;
16 end
17 end
18 current order ← reverse(current order);
19 end

Fig. 3 Sketch for Max-sum_AD

x1

x2 x3

(a)

xi

xj R G B

R 1 0 0
G 0 1 0
B 0 0 1

(b)

x1

x2 x3

f12

f23

f13

(c)

Fig. 4 An instance of graph-coloring

It can be easily observed that all the variable nodes will choose assignment R and therefore
reach a total cost 3 after a phase of message-passing since there are ties among their beliefs.
Concretely, variable nodes inMax-sum_ADalways optimistically assume that their upstream
variable nodes will choose the assignments minimizing costs according to Eq. (3), which
could usually be failed. For example, according to its belief z2(x2), x2 can reach a cost with 0
if it choose assignment R. However, the cost can be achieved onlywhen x1 choose assignment
G or B, which is impossible in this situation.

To give a better insight into the pathology, consider the following definitions.

Definition 1 (Context) A context of a message from a function node to a variable node
specifies for each cost in the message, the assignments of all involved variables except the
target to produce such cost.

For example, the context of a message from fi j to xi in Max-sum_AD can be specified by a
function c fi j→xi (xi) : Di → Dj such that:

c fi j→xi (xi) = argmin
x j

[fi j (xi , x j) + qx j→ fi j (x j)]

123

Autonomous Agents and Multi-Agent Systems (2018) 32:822–860 831

Note that the context is a concept that helps us to analyze the algorithm, and Max-sum_AD
itself is not required to propagate such a context.

Definition 2 (Number of invalid assumptions) The number of invalid assumptions of a vari-
able node xi in Max-sum algorithms on DAGs is a number I Ai such that:

I Ai =
∑

n∈Pi

I(c fni→xi (ki) �= kn)

where Pi is a set of indexes of neighboring agents whose variable nodes are before xi in the
current order, kn is the assignment of xn , and I is an indicator function.

It is worthmentioning that in the definition, only neighboring agents whose variable nodes are
before the variable node in the current order are considered. That is because the assignments
of downstream variable nodes do not converge before the assignment of the variable node
converges. Thus, taking downstream variable nodes into consideration is meaningless.

Context functions and the number of invalid assumptions of the above example are shown
as follows.

c f12→x2 = [G,R,R] c f13→x3 = [G,R,R] c f23→x3 = [G,R,R]
I A1 = 0
I A2 = I(c f12→x2(R) �= R) = 1
I A3 = I(c f13→x3(R) �= R) + I(c f23→x3(R) �= R) = 2

From the result, one can easily find that all the variable nodes except x1 suffer from invalid
assumptions, which eventually leads to the poorest solution.3

Max-sum_ADVP remedies the problem by performing value propagation after a certain
timing. That is, after enabling value propagation, variable nodes in Max-sum_ADVP propa-
gate both the beliefs they have accumulated and the assignments they have chosen. Function
nodes produce messages by considering the received assignments. Specifically, instead of
minimizing the function over all the variables except the target, a function node now fixes
the received assignments of all the variables except the target to compute messages. In this
way, the invalid assumptions are eliminated since the beliefs in a message from a function
node are computed in terms of the assignments of upstream variable nodes.

Consider again the example shown in Fig. 2. When value propagation is enabled in the
first iteration, the trace of Max-sum_ADVP is shown as follows.

Max-sum_ADVP
Iteration 1: x1 → f12 : [0, 0, 0], x1 = R x1 → f13 : [0, 0, 0], x1 = R
Iteration 2: f12 → x2 : [1, 0, 0] f13 → x3 : [1, 0, 0]
Iteration 3: x2 → f23 : [1, 0, 0], x2 = G
Iteration 4: f23 → x3 : [0, 1, 0]
Beliefs: z1 = [0, 0, 0] z2 = [1, 0, 0] z3 = [1, 1, 0]
Assignments: x∗

1 = R x∗
2 = G x∗

3 = B

It can be observed that value propagation can help variable nodes to break the ties in their
beliefs and reach a total cost 0 after a phase of message-passing. We also give an analysis on
context functions and invalid assumptions during the execution as follows.

c f12→x2 = [R,R,R] c f13→x3 = [R,R,R] c f23→x3 = [G,G,G]
I A1 = 0

3 In fact, Standard Max-sum without personal preferences cannot solve graph-coloring problem for the same
reason.

123

832 Autonomous Agents and Multi-Agent Systems (2018) 32:822–860

I A2 = I(c f12→x2(G) �= R) = 0
I A3 = I(c f13→x3(B) �= R) + I(c f23→x3(B) �= G) = 0

It is noticeable that after value propagation is enabled, the contexts are identical to the
assignments of upstream variable nodes and the number of invalid assumptions for each
variable node is decreased to zero, which demonstrates the power of value propagation.

5 Proposedmethods

5.1 Motivation

In this section, we will first theoretically show that, althoughMax-sum_ADVP can guarantee
the cross phase convergence and greatly improve solution quality of Max-sum_AD, value
propagation can block the belief propagation. As a result, agents fail to accumulate the global
information and the algorithm will eventually behave like a sequential greedy local search
algorithm. Then, we will give an example to explicitly showMax-sum_ADVP can eventually
get stuck in a local optimum.

Lemma 1 Function nodes will block the belief propagation, and can only propagate local
functions when value propagation is enabled.

Proof Without loss of generality, consider the part of a DAG which consists of two variable
nodes and a function node, shown as Fig. 5. When value propagation is enabled, variable
node xi propagates its belief, as well as its assignment ki , to its downstream function node
fi j . That is,

xi → fi j : qxi→ fi j (xi) =
∑

n∈Ni\ j
r fni→xi (xi), xi = ki (6)

fi j produces the message to x j by considering the assignment it received, That is,

fi j → x j : r fi j→x j (x j) = fi j (ki , x j) + qxi→ fi j (ki) (7)

Since it is a constant and has no influence on the decision-making of x j , the term qxi→ fi j (ki)
can be removed safely. And thus Eq. (7) can be simplified as

fi j → x j : r fi j→x j (x j) = fi j (ki , x j) (8)

Obviously, the right-hand side of Eq. (8) is a local function with a given assignment and the
belief is eliminated, which concludes the lemma. �	

The immediate corollary from Lemma 1 is that messages in a factor graph are all local
functions after the first convergence of value propagation. At the same time, variable nodes
also fail to collect and forward the global beliefs. In other words, value propagation restricts

Fig. 5 Simple factor graph with
two variable nodes and a function
node

xi fij xj

123

Autonomous Agents and Multi-Agent Systems (2018) 32:822–860 833

the exploration brought by Max-sum since agents no longer can utilize the global informa-
tion to make decisions. Next, we will theoretically show that agents in Max-sum_ADVP
eventually follow the decision-making strategy of a greedy local search algorithm.

Proposition 1 Max-sum_ADVP share the same decision-making strategy with greedy local
search algorithms after the first convergence of value propagation.

Proof Since value propagation has converged in the previous phase, the beliefs from the
downstream neighbors of a variable node xi are local functions according to Lemma 1.
Similarly, its upstream neighbors can only propagate local functions with respect to their
assignments. Thus, the belief for xi is

zi (xi) =
∑

j∈Pi

fi j (xi , k
m
j) +

∑

j∈Si
fi j (xi , k

m−1
j) (9)

where kmj is the assignment selected by variable node x j in the mth phase and Si denotes
the set of indexes of the neighboring agents whose variable nodes are after xi . Therefore
xi selects an assignment to minimize Eq. (9), which indicates that it always makes the best
response in terms of the given assignments from its neighbors.

On the other hand, agent ai in greedy local search algorithms (e.g., DSA, MGM, etc.) also
makes decisions by considering all neighbors’ assignments. That is:

∑

j∈Ni

fi j (xi , k j) (10)

And then ai greedily selects an assignment to minimize Eq. (10). It can be concluded from
Eqs. (9) and (10) that Max-sum_ADVP and greedy local search algorithm share the same
decision-making strategy. So, Proposition 1 is proved. �	

Note that Proposition 1 only establishes the equivalence between Max-sum_ADVP and
greedy local search algorithms in terms of the decision-making strategy, and they are different
in other aspects. For example, agents in DSA stochastically replace their assignments by
the best responses in parallel, while variable nodes in Max-sum_ADVP make decisions
sequentially. Proposition 1 indicates that agents inMax-sum_ADVP cannot utilize the global
beliefs, and will eventually behave like the ones in a greedy local search algorithm. Thus,
Max-sum_ADVPalso suffers fromgetting stuck in local optima.Consider theDCOP instance
shown in Fig. 1 and the initial message-passing order shown in Fig. 2. Assume that value
propagation is enabled after the second convergence (i.e., at the beginning of the third phase).
The trace of Max-sum_ADVP is shown as follows.4

Phase 1 (belief propagation)
Iteration 1: x1 → f13 : [0, 0] x2 → f23 : [0, 0] x2 → f24 : [0, 0]
Iteration 2: f13 → x3 : [1, 3] f23 → x3 : [7, 3] f24 → x4 : [1, 3]
Iteration 3: x3 → f34 : [8, 6]
Iteration 4: f34 → x4 : [12, 12]
Beliefs: z1 = [0, 0] z2 = [0, 0] z3 = [8, 6] z4 = [13, 15]
Assignments: x∗

1 = 0 x∗
2 = 0 x∗

3 = 1 x∗
4 = 0

Phase 2 (belief propagation)
Iteration 1: x4 → f24 : [12, 12] x4 → f34 : [1, 3]
4 Since Lemma 1 has demonstrated that the global beliefs have no influence on the algorithm after enabling
value propagation, we hereafter drop the global beliefs in response messages and only present exactly local
functions in value propagation phases.

123

834 Autonomous Agents and Multi-Agent Systems (2018) 32:822–860

Iteration 2: f34 → x3 : [5, 7] f24 → x2 : [15, 13]
Iteration 3: x3 → f13 : [12, 10] x3 → f23 : [6, 10]
Iteration 4: f13 → x1 : [13, 13] f23 → x2 : [13, 13]
Beliefs: z1 = [13, 13] z2 = [28, 26] z3 = [13, 13] z4 = [13, 15]
Assignments: x∗

1 = 0 x∗
2 = 1 x∗

3 = 1 x∗
4 = 0

Phase 3 (value propagation)
Iteration 1: x1 → f13 : [0, 0], x1 = 0 x2 → f23 : [8, 3], x2 = 1

x2 → f24 : [1, 5], x2 = 1
Iteration 2: f13 → x3 : [1, 7] f23 → x3 : [8, 3] f24 → x4 : [1, 5]
Iteration 3: x3 → f34 : [9, 10], x3 = 0
Iteration 4: f34 → x4 : [4, 7]
Beliefs: z1 = [13, 13] z2 = [28, 26] z3 = [14, 17] z4 = [5, 12]
Assignments: x∗

1 = 0 x∗
2 = 1 x∗

3 = 0 x∗
4 = 0

Phase 4 (value propagation)
Iteration 1: x4 → f24 : [4, 7], x4 = 0 x4 → f34 : [1, 5], x4 = 0
Iteration 2: f34 → x3 : [4, 6] f24 → x2 : [3, 1]
Iteration 3: x3 → f13 : [12, 9], x3 = 0 x3 → f23 : [5, 13], x3 = 0
Iteration 4: f13 → x1 : [1, 9] f23 → x2 : [7, 8]
Beliefs: z1 = [1, 9] z2 = [10, 9] z3 = [13, 16] z4 = [5, 12]
Assignments: x∗

1 = 0 x∗
2 = 1 x∗

3 = 0 x∗
4 = 0

Phase 5 (value propagation)
Iteration 1: x1 → f13 : [0, 0], x1 = 0 x2 → f23 : [3, 1], x2 = 1

x2 → f24 : [7, 8], x2 = 1
Iteration 2: f13 → x3 : [1, 7] f23 → x3 : [8, 3] f24 → x4 : [1, 5]
Iteration 3: x3 → f34 : [9, 10], x3 = 0
Iteration 4: f34 → x4 : [4, 7]
Beliefs: z1 = [13, 13] z2 = [28, 26] z3 = [14, 17] z4 = [5, 12]
Assignments: x∗

1 = 0 x∗
2 = 1 x∗

3 = 0 x∗
4 = 0

It can be observed from the trace that after two phases of value propagation (i.e., Phase 3
and Phase 4), Max-sum_ADVP has converged since neither the response messages nor the
beliefs in Phase 5 differ from the ones in Phase 3. Thus, the algorithm eventually converges to
a suboptimal solution whose cost is 14, while the optimal solution is {x1 = 1, x2 = 1, x3 =
1, x4 = 0}whose cost is 13. Also, the trace demonstrates thatMax-sum_ADVP heavily relies
on the initial assignments, which is a major weakness of value propagation. Suppose that the
assignment for each variable node at the end of Phase 4 is {x1 = 1, x2 = 1, x3 = 0, x4 = 0},
then one can easily verify that the algorithm will converge to the optimal solution after the
message-passing of Phase 5.

Since Lemma 1 and Proposition 1 have demonstrate that Max-sum_ADVP can only prop-
agate the local information and eventually behaves like a greedy local search algorithm,
efficient explorative mechanisms must be introduced to make agents able to access the global
information. Thus, in the following sections, we propose several Max-sum algorithms with
novel non-consecutive value propagation strategies to balance exploration and exploitation.

5.2 Max-sum_ADwith single-side value propagation

The first strategy we use to get a balance between exploration and exploitation is alternatively
executingMax-sum_AD andMax-sum_ADVP. In this way, value propagation will be always

123

Autonomous Agents and Multi-Agent Systems (2018) 32:822–860 835

executed in the same direction and thus the algorithm is called Max-sum_AD with single-
side value propagation (Max-sum_ADSSVP for short). Specifically, after enabling value
propagation, the following phases will be alternatively in each round:

– Value propagation phase enabling value propagation to guarantee the solution quality
when the current message-passing order is forward direction.

– Belief propagation phase performing like Max-sum_AD to find promising initial assign-
ments for the next phase of value propagation when the current message-passing order
is backward direction.

Here, the terms “forward direction” and “backward direction” refer to the initial message-
passing order and the corresponding reverse message-passing order. To give a better
explanation on the algorithm, consider again the DCOP instance shown in Fig. 1 and the
initial message-passing order shown in Fig. 2. We also assume value propagation is enabled
after the second convergence. The trace of Max-sum_ADSSVP is presented as follows (we
omit the first two phases since they are exactly the same as the ones of Max-sum_ADVP):

Phase 3 (value propagation)
Iteration 1: x1 → f13 : [0, 0], x1 = 0 x2 → f23 : [8, 3], x2 = 1

x2 → f24 : [1, 5], x2 = 1
Iteration 2: f13 → x3 : [1, 7] f23 → x3 : [8, 3] f24 → x4 : [1, 5]
Iteration 3: x3 → f34 : [9, 10], x3 = 0
Iteration 4: f34 → x4 : [4, 7]
Beliefs: z1 = [13, 13] z2 = [28, 26] z3 = [14, 17] z4 = [5, 12]
Assignments: x∗

1 = 0 x∗
2 = 1 x∗

3 = 0 x∗
4 = 0

Phase 4 (belief propagation)
Iteration 1: x4 → f24 : [4, 7] x4 → f34 : [1, 5]
Iteration 2: f34 → x3 : [5, 7] f24 → x2 : [7, 5]
Iteration 3: x3 → f13 : [13, 10] x3 → f23 : [6, 14]
Iteration 4: f13 → x1 : [14, 13] f23 → x2 : [13, 14]
Beliefs: z1 = [14, 13] z2 = [20, 19] z3 = [14, 17] z4 = [5, 12]
Assignments: x∗

1 = 1 x∗
2 = 1 x∗

3 = 0 x∗
4 = 0

Phase 5 (value propagation)
Iteration 1: x1 → f13 : [0, 0], x1 = 1 x2 → f23 : [7, 5], x2 = 1

x2 → f24 : [13, 14], x2 = 1
Iteration 2: f13 → x3 : [9, 3] f23 → x3 : [8, 3] f24 → x4 : [1, 5]
Iteration 3: x3 → f34 : [17, 6], x3 = 1
Iteration 4: f34 → x4 : [6, 6]
Beliefs: z1 = [14, 13] z2 = [20, 19] z3 = [22, 13] z4 = [7, 11]
Assignments: x∗

1 = 1 x∗
2 = 1 x∗

3 = 1 x∗
4 = 0

It can be seen from the trace that instead of continuously performing value propagation
in Max-sum_ADVP, our algorithm performs belief propagation after the third convergence.
Therefore, the algorithm has an opportunity to access the new promising assignments rather
than monotonically optimizing the old ones like Max-sum_ADVP, and eventually breaks
out of the local optima. Moreover, since every belief propagation phase can provide the
new assignments, our algorithm is less sensitive to the value propagation timings, which
overcomes the major weakness of Max-sum_ADVP.

Note that variable nodes in our algorithm can make decisions beyond local functions.
Specifically, we have the following observation.

123

836 Autonomous Agents and Multi-Agent Systems (2018) 32:822–860

Observation 1 Variable nodes inMax-sum_ADSSVP always make decisions in terms of local
functions and accumulated beliefs after enabling value propagation. Specifically, the belief
of a variable node xi at the end of phase m is

zi (xi) =
∑

n∈Pi

fni (k
m
n , xi) +

∑

n∈Si
rm−1
fni→xi

(xi)

if the current phase is a value propagation phase. Here, rm−1
fni→xi

(xi) denotes the message
from fni to xi at the end of phase m−1. Similarly, if the current phase is a belief propagation
phase, the belief for xi is

zi (xi) =
∑

n∈Pi

rmfni→xi (xi) +
∑

n∈Si
fni (k

m−1
n , xi)

Taking the DAG in Fig. 2 for an example, if the current phase is value propagation phase,
variable node x3 uses the local functions from its upstream neighbors f23, f13 and the accu-
mulated belief from its downstream neighbor f34. Formally, the belief for x3 at the end of
the current phase m is:

z3(x3) = f13(k
m
1 , x3) + f23(k

m
2 , x3) + rm−1

f34→x3
(x3)

The property helps the algorithm to escape from local optima by considering both the
immediate benefits (i.e., local functions) and the global benefits (i.e., accumulated beliefs).
However, since variable nodes now do not entirely make decisions based on local functions,
the algorithmno longer guaranteesmonotonicity and the cross phase convergence. In practice,
the solution quality usually fluctuates wildly during the transitions from value propagation
phases to belief propagation phases, and the algorithm needs a lot of iterations to suppress
the fluctuations.

We notice that messages are computed based on the messages from all neighbors to facil-
itate cyclic information propagation across phases. Thus, the solution quality at the end of a
value propagation phase has a critic impact on the next phase of belief propagation. Consid-
ering the monotonicity of value propagation, our first method to remedy the aforementioned
problem is pretty straightforward.We parameterize the algorithm by the length of consecutive
value propagation phases t , namely Max-sum_ADSSVP (t).5 Specifically, in each round the
algorithm first performs t phases of value propagation and then performs a phase of belief
propagation. In this way, the solution quality is sufficiently optimized before switching to a
belief propagation phase and fluctuations can be efficiently suppressed. It should be noted
that the algorithm is substantially different fromMax-sum_ADVP with message exploration
methods [39]. The purpose of executing multiple phases of value propagation in our algo-
rithm is to sufficiently optimize solutions, while [39] alternatively executes different versions
of Max-sum algorithms to balance exploration and exploitation. Besides, in each round of
our algorithm, belief propagation should be executed exactly one phase. If two consecutive
phases of belief propagation are executed, then agents in the latter belief propagation phase
compute messages entirely based on the messages in the first belief propagation phase and
have nothing to do with the previous value propagation phases.

The secondmethod we use to tackle the problem is to introduce a local search algorithm to
improve the solution quality after value propagation phases, which yields an algorithm called

5 We notice that in the method value propagation is no longer always performed in a direction, and thus the
name is somewhat misleading. However, since the paper is an extension to our AAMAS paper [3], we inherit
the naming convention from [3].

123

Autonomous Agents and Multi-Agent Systems (2018) 32:822–860 837

Max-sum_ADSSVP with local search. Note that although we have proved that value prop-
agation will make Max-sum_ADVP eventually behave like a greedy local search algorithm,
it is still necessary to perform a local search for the further optimization. That is because
value propagation needs lots of iterations to refine the solutions, and it only guarantees to
produce 1-Opt solutions at best. Thus, local search algorithms should be introduced for quick
and substantial optimizations. Specifically, the following phases are performed after a value
propagation phase:

– Refining phase performing local search with the initial assignments generated by the
value propagation phase to produce a higher-quality solution.

– Modification phase performing value propagation with the assignment generated by the
refining phase to apply new assignments into a factor graph.

The sketch of the algorithm is presented in Fig. 6. The algorithm is parameterized by the
adopted local search algorithm, the number of iterations k for a phase of value propagation
or belief propagation and the number of iterations l for local search. An agent performs
belief propagation when the current message-passing order is backward direction (line 5–7),
otherwise it performs value propagation (line 8–11). If the current message-passing order
is backward direction (i.e., agents are in a value propagation phase), the refining phase
and modification phase are trigged consecutively after the first k iterations (line 13–19).
Each agent takes its assignment generated by value propagation as its initial assignment and
performs l iterations of local search (line 14). After that, each agent performs k iterations of
value propagation with the new assignment generated by the refining phase (line 15–18).

It is worthmentioning that onlyMax-sum_ADSSVP can be (or needs to be) enhancedwith
local search. Actually, our purpose to perform local search after a value propagation phase
is to provide a further optimization on solution quality and produce a positive impact on the

Algorithm 2: Max-sum ADSSVP with local search(agent i, local
search, forward direction,k,l)

1 current order ← forward direction ;
2 backward direction ← reverse(forward direction) ;
3 while no termination condition is met do
4 for k iterations do
5 if current order is backward direction then
6 perform belief propagation;
7 end
8 else if current order is forward direction then
9 xi ← current optimal decision;

10 perform value propagation using assignment xi;
11 end
12 end
13 if current order is forward direction then
14 perform l iterations local search with initial assignment xi;
15 xi ← current optimal decision;
16 for k iterations do
17 perform value propagation using assignment xi;
18 end
19 end
20 current order ← reverse(current order);
21 end

Fig. 6 Sketch for Max-sum_ADSSVP with local search

123

838 Autonomous Agents and Multi-Agent Systems (2018) 32:822–860

next phase of belief propagation. Max-sum_ADVP, however, is not necessary to be enhanced
by local search since it is a monotonic algorithm and is proven to behave like a greedy local
search algorithm after the second value propagation phase. Max-sum and Max-sum_AD, on
the other hand, cannot be enhanced with local search algorithms since they do not have any
value propagation phase. As a result, the assignments generated by local search cannot be
applied into a factor graph and thus cannot affect the optimization processes.

The extra overhead of Max-sum_ADSSVP mainly lies on computation. Specifically, a
function node in a value propagation phase requires O(d) operations to compute a message
by fixing the assignment of the upstream variable node, while a function node in a belief
propagation phase requires O(d2) operations to compute a message by traversing the domain
of the upstream variable node for each entry in the message. Here, d = maxDi∈D |Di |.
Thus, compared toMax-sum_ADVP,Max-sum_ADSSVPwill incur O(d2) operations when
computing messages to variable nodes in every belief propagation phase after enabling value
propagation.

The computational overheads of Max-sum_ADSSVP (t) and Max-sum_ADSSVP with
local search are even smaller. ForMax-sum_ADSSVP (t), each round comprises several value
propagation phases and a belief propagation phase. Thus, the number of belief propagation
phases is much reduced if all the algorithms run for the same number of iterations. The same
conclusion can be made in Max-sum_ADSSVP with local search due to the existence of
refining phases and modification phases. Moreover, a refining phase usually incurs a minor
overhead since it is very short, and a modification phase behaves just like a value propa-
gation phase and only incurs O(d) operations when producing a message from a function
node. Thus, Max-sum_ADSSVP (t) and Max-sum_ADSSVP with local search have smaller
computational overheads than Max-sum_ADSSVP in general.

5.3 Max-sumwith hybrid belief/value propagation in a DAG

We notice that in our first algorithm agents can only perform exploration or exploitation in
a phase, and thus considerable iterations need to be performed to suppress cost fluctuations
during the transitions from value propagation phases to belief propagation phases. Moreover,
it can be easily concluded from Observation 1 that variable nodes always make decisions
based on the out-of-date assignment information in belief propagation phases after enabling
value propagation. That is, variable nodes always take the assignment information received
in the previous value propagation phase that (probably) is going to be overridden in this phase
into the considerations, which also contributes to the cost fluctuations.

In this section, we try to mitigate the cost fluctuations by making the latest messages
available to nodes with the least possible delay, and propose a novel algorithm called Max-
sum with hybrid belief/value propagation (Max-sum_HBVP for short). Specifically, instead
of executing belief propagation and value propagation alternatively every two phases, we
execute value propagation and belief propagation simultaneously from two opposite ends of
a DAG in one round. The sketch of the algorithm is presented in Fig. 7.

Each node in the algorithm checks whether it receives all messages from its upstream
(or downstream) neighbors. If so, the node sends messages to its downstream nodes (or
upstream nodes) provided it hasn’t sent messages to the nodes (line 9–13, line 15–18). When
the iteration number reaches k, all sending and receiving flags are cleared, and then a new
round begins (line 19). The hybrid execution of belief propagation and value propagation is
implemented by function nodes. That is, when a function node has received all messages from
its upstream neighbors, it performs value propagation to produce messages to its downstream

123

Autonomous Agents and Multi-Agent Systems (2018) 32:822–860 839

Algorithm 3: Max-sum HBVP(node n)

1 current order ←select an order on all nodes in the factor graph;
2 Nn ← the set of indexes of n’s neighboring nodes;
3 Nprev n ← {n̂ ∈ Nn : n̂ is before n in current order};
4 Nfollow n ← Nn\Nprev n;
5 while no termination condition is met do
6 for k iterations do
7 collect messages from Nn;
8 if n is a variable node then
9 if n receives all messages from Nprev n and hasn’t sent

messages to Nfollow n then
10 compute x∗

n accroding to Eq. (5);
11 produce the message {x∗

n} to n′ using messages received
from Nn\{n′}, ∀n′ ∈ Nfollow n;

12 if n receives all messages from Nfollow n and hasn’t sent
messages to Nprev n then

13 produce the message {qn→n′} to n′ using messages received
from Nn\{n′}, ∀n′ ∈ Nprev n;

14 else if n is a function node then
15 if n receives all messages from Nprev n and hasn’t sent

messages to Nfollow n then
16 produce the message to n′ using the constraint,

assignments received from Nn\{n′}, ∀n′ ∈ Nfollow n;
17 if n receives all messages from Nfollow n and hasn’t sent

messages to Nprev n then
18 produce the message to n′ using the constraint, messages

received from Nn\{n′}, ∀n′ ∈ Nprev n;
19 clear all sending and receiving flags;

Fig. 7 Sketch for Max-sum_HBVP

Fig. 8 An execution example of
Max-sum_HBVP

x4

x3

x2 x1

f34

f23

f24

f13

belief propagation

value propagation

neighbors (line 15–16), while it performs belief propagation to produce messages to its
upstream neighbors when it has received all messages from its downstream neighbors (line
17–18). Moreover, variable nodes only make decisions when receiving messages from their
upstream neighbors in a round (line 10). In this way, a variable node will be able to make
its decision based on the latest assignment information in this round, which overcomes the
aforementioned defect.

Taking the DCOP instance in Fig. 1 and the DAG in Fig. 2 for an example, Fig. 8 and the
following trace demonstrate the execution of Max-sum_HBVP.

123

840 Autonomous Agents and Multi-Agent Systems (2018) 32:822–860

Round 1
Iteration 1: z1(x1) = [0, 0] ⇒ x∗

1 = 0 z2(x2) = [0, 0] ⇒ x∗
2 = 0

x1 → f13 : [0, 0], x1 = 0 x2 → f23 : [0, 0], x2 = 0
x2 → f24 : [0, 0], x2 = 0 x4 → f24 : [0, 0]
x4 → f34 : [0, 0]

Iteration 2: f13 → x3 : [1, 7] f23 → x3 : [7, 3] f24 → x4 : [3, 3]
f24 → x2 : [3, 1] f34 → x3 : [4, 6]

Iteration 3: z3(x3) = [12, 16] ⇒ x∗
3 = 0

x3 → f34 : [8, 10], x3 = 0 x3 → f13 : [11, 9]
x3 → f23 : [5, 13]

Iteration 4: f34 → x4 : [4, 7] f13 → x1 : [12, 12] f23 → x2 : [12, 13]
Iteration 5: z4(x4) = [7, 10] ⇒ x∗

4 = 0
Round 2
Iteration 1: z1(x1) = [12, 12] ⇒ x∗

1 = 0 z2(x2) = [15, 14] ⇒ x∗
2 = 1

x1 → f13 : [0, 0], x1 = 0 x2 → f23 : [3, 1], x2 = 1
x2 → f24 : [12, 13], x2 = 1 x4 → f24 : [4, 7]
x4 → f34 : [3, 3]

Iteration 2: f13 → x3 : [1, 7] f23 → x3 : [8, 3] f24 → x4 : [1, 5]
f24 → x2 : [7, 5] f34 → x3 : [7, 9]

Iteration 3: z3(x3) = [16, 19] ⇒ x∗
3 = 0

x3 → f34 : [9, 10], x3 = 0 x3 → f13 : [15, 12]
x3 → f23 : [8, 16]

Iteration 4: f34 → x4 : [4, 7] f13 → x1 : [16, 15] f23 → x2 : [15, 16]
Iteration 5: z4(x4) = [5, 12] ⇒ x∗

4 = 0
Round 3
Iteration 1: z1(x1) = [16, 15] ⇒ x∗

1 = 1 z2(x2) = [22, 21] ⇒ x∗
2 = 1

x1 → f13 : [0, 0], x1 = 1 x2 → f23 : [7, 5], x2 = 1
x2 → f24 : [15, 16], x2 = 1 x4 → f24 : [4, 7]
x4 → f34 : [1, 5]

Iteration 2: f13 → x3 : [9, 3] f23 → x3 : [8, 3] f24 → x4 : [1, 5]
f24 → x2 : [7, 5] f34 → x3 : [5, 7]

Iteration 3: z3(x3) = [22, 13] ⇒ x∗
3 = 1

x3 → f34 : [17, 6], x3 = 1 x3 → f13 : [13, 10]
x3 → f23 : [14, 10]

Iteration 4: f34 → x4 : [6, 6] f13 → x1 : [14, 13] f23 → x2 : [13, 13]
Iteration 5: z4(x4) = [7, 11] ⇒ x∗

4 = 0

It can be seen from the trace that along with the DAG, the algorithm performs value propa-
gation (e.g., x1 → f13, x2 → f23, x2 → f24 in iteration 1, f13 → x3, f23 → x3, f24 → x4
in iteration 2, x3 → f34 in iteration 3 and f34 → x4 in iteration 4 of each round), while
the algorithm performs belief propagation simultaneously along with the reverse direction
of the DAG (e.g., x4 → f24, x4 → f34 in iteration 1, f24 → x2, f34 → x3 in iteration 2,
x3 → f13, x3 → f23 in iteration 3 and f13 → x1, f23 → x2 in iteration 4 of each round).
Moreover, variable nodes who receive all messages from all its upstream neighbors can make
decisions. For example, x3 can only makes its decision in iteration 3 of each round since it
hasn’t received messages from f13 and f12 until the end of iteration 2. In this way, x3 always
makes its decision by considering the latest assignments of x1 and x2 in a round. As a result,

123

Autonomous Agents and Multi-Agent Systems (2018) 32:822–860 841

the optimization process is efficiently boosted and the optimal solution is produced within 3
rounds.

Since the decision-making timings are strictly controlled in Max-sum_HBVP, its belief
now depends on its position in a DAG when a variable node makes a decision. Next, we
will discuss the decision-making timings and the corresponding beliefs for variable nodes.
To begin with, let us introduce some notations in DAGs. We denote the longest path from
variable node xi to x j as pathi, j , the set of start nodes and end nodes (i.e., nodes who do
not have any upstream or downstream neighbors) as V and the arc from xi to neighboring
function node fi j as (i, i j) in a DAG. Particularly, if x j is not reachable from node xi , then
pathi, j = ∅ and thus |pathi, j | = 0.

Proposition 2 A variable node xi makes a decision in the hi + 1-th iteration in each round,
where hi = maxv∈V :pathv,i �=∅ |pathv,i | is the length of the longest path among the paths
from start nodes to xi .

Proof Let v∗
i = argmaxv∈V :pathv,i �=∅ |pathv,i |. Without loss of any generality, assume that

(i j, i) ∈ pathv∗
i ,i . It is obvious that the decision-making cannot happen before the hi + 1-

th iteration since xi receives the message from function node fi j no earlier than the hi -th
iteration.

Suppose that the decision-making happens at the h′
i + 1-th iteration where h′

i > hi , then
there must exist (at least) a function node fik that sends a message to xi in the h′

i − 1-th
iteration. Thus there also must exist (at least) a variable node that sends a message to fik in
the h′

i − 2-th iteration. The similar analysis can be applied recursively until the first iteration
when (at least) a start node v′

i sends messages to its downstream neighbors. Therefore, there
must exist a path from v′

i to xi whose length is h′
i , which is contradictory with the definition

to hi .
Thus, the proposition is proved. �	
Since xi needs to wait for messages from all its upstream neighbors to make a decision, it

is always able to consider the latest assignment informations in this round. Moreover, it can
be concluded from Proposition 2 that xi also considers the messages sent in this round from
downstream neighbors who send messages before the hi + 1-th iteration in this round, and
the messages sent in the last round from the remaining downstream neighbors. Formally, we
have the following observation.

Observation 2 When a variable node xi is able to make a decision in round m, its belief is
given by

zi (xi) =
∑

n∈Pi

fni (k
m
n , xi) +

∑

n∈Si :(i,ni)∈pathi,v
v∈V ,|pathi,v |>hi

rm−1
fni→xi

(xi) +
∑

n∈Si :(i,ni)∈pathi,v
v∈V ,|pathi,v |≤hi

rmfni→xi (xi)

Consider the simple example shown in Fig. 9. It can be easily observed that the length of
the longest path from the start nodes to variable node x2 is 2. Thus, according to Proposition
2, x2 makes a decision at the third iteration in roundm. Up to the last iteration, x2 has received
the messages from f12 and f23 but hasn’t received the message from f24 in this round. Thus,
the belief for x2 when making a decision is

z2(x2) = f12(k
m
1 , x2) + rmf23→x2(x2) + rm−1

f24→x2
(x2)

It can be concluded from Observation 2 that similar to Max-sum_ADSSVP, Max-
sum_HBVP enables variable nodes to escape from local optima by considering both local

123

842 Autonomous Agents and Multi-Agent Systems (2018) 32:822–860

functions and accumulated beliefs. Moreover, since variable nodes in Max-sum_HBVP
always make decisions based on valid assignment information, the cost fluctuation is effec-
tively suppressed. Variable nodes also have chances to consider the beliefs produced in the
current round from their downstream neighbors, which is impossible inMax-sum_AD,Max-
sum_ADVP and Max-sum_ADSSVP.

Max-sum_HBVP generally has smaller overheads than Max-sum_ADVP. Specifically,
given the maximum iteration k for each phase or round, the total number of messages
exchanged in Max-sum_ADVP is 2k|F | in each phase, where F is the set of constraints.
However, since each node in Max-sum_HBVP only produces messages twice a round (one
for each direction), the total number of messages exchanged in Max-sum_HBVP is just
4|F | in each round. Moreover, although computing belief propagation messages to upstream
neighbors will incur an extra computational overhead for function nodes, our algorithm still
has advantages since the computation is only executed by function nodes once a round.

5.4 Max-sum_ADwith probabilistic value propagation

In this section, we balance exploration and exploitation in Max-sum_ADVP via proba-
bilistic value propagation and present an algorithm called Max-sum_AD with probabilistic
value propagation (Max-sum_ADPVP). That is, after enabling value propagation, each
function node makes a stochastic decision about whether it performs value propagation
in the current iteration. Thus, compared to the ones in Max-sum_ADVP, variable nodes
in Max-sum_ADPVP have chances to consider beliefs beyond local functions, and hence
our algorithm is less sensitive to the value propagation timing which is a major concern in
Max-sum_ADPVP. The sketch of the algorithm is presented in Fig. 10.

Similar to Max-sum_ADVP, Max-sum_ADPVP also operates on alternating DAGs. The
difference mainly lies on the computation of messages in each function node. Specifically,
instead of always considering the assignments of its upstream neighbors inMax-sum_ADVP
after enabling value propagation, a function node in our algorithm considers the assignments
and performs value propagation when satisfying the probability p (line 12–13). Otherwise,
it performs belief propagation (line 14–15).

In fact, the value propagation probability p determines the degree of exploitation. Par-
ticularly, when p is set to 1, the algorithm is entirely exploitative and is equivalent to
Max-sum_ADVP. In contrast, when p is set to 0, the algorithm has the highest degree of
exploration and is equivalent to Max-sum_AD. Thus, considering the impact of p, it is natu-
ral to extend the algorithm by adapting p during the optimizing process. In general, we want
to encourage the algorithm to perform exploration at the beginning of the optimizing process
to find potential promising assignments, while to make the algorithm more exploitative at

x1 f12 x2

f23 x3

f24 x4 f45 x5

belief propagation
value propagation

Fig. 9 A simple example of Max-sum_HBVP execution

123

Autonomous Agents and Multi-Agent Systems (2018) 32:822–860 843

Algorithm 4: Max-sum ADPVP(node n, probability p)

1 current order ←select an order on all nodes in the factor graph;
2 Nn ← the set of indexes of n’s neighboring nodes;
3 while no termination condition is met do
4 Nprev n ← {n̂ ∈ Nn : n̂ is before n in current order};
5 Nfollow n ← Nn\Nprev n;
6 for k iterations do
7 collect messages from Nn;
8 if n is a variable node then
9 compute x∗

n accroding to Eq. (5);
10 produce the message {qn→n , x∗

n} to n using messages received
from Nn\{n }, ∀n ∈ Nfollow n;

11 else if n is a function node then
12 if random()< p then
13 produce the message to n using the constraint,

assignments received from Nn\{n }, ∀n ∈ Nfollow n;
14 else
15 produce the message to n using the constraint, messages

received from Nn\{n }, ∀n ∈ Nprev n;
16 current order ← reverse(current order);

Fig. 10 Sketch for Max-sum_ADPVP

the end of the optimizing process to guarantee solution qualities. Specifically, we propose
the following four methods to adapt the value propagation probability.

– Linear adaptation (LA) increases the value propagation probability uniformly. Thus, it
makes the algorithm transform from the least exploitative one to the most exploitative
one uniformly during the whole optimizing process. Formally, the value propagation
probability in iteration m is given by

p = m

Max_I ter

where Max_I ter is the maximal iteration number.
– Negative quadratic adaptation (NQA) quadratically increases the value propagation

probability with a monotonically decreased derivative. Thus, the probability increases
dramatically at the beginning of the optimizing process and the algorithm behaves more
exploitative in most of the iterations. Formally, the value propagation probability in iter-
ation m is given by

p = −
(

m

Max_I ter

)2

+ 2m

Max_I ter

– Positive quadratic adaptation (PQA) quadratically increases the value propagation prob-
ability with a monotonically increased derivative. Thus, the probability increases slowly
at the beginning of the optimizing process, which encourages the algorithm to perform
exploration. Formally, the value propagation probability in iteration m is given by

p =
(

m

Max_I ter

)2

– Exponential adaptation (EA) exponentially increases the value propagation probabil-
ity. Thus, the probability remains at a low level for the most of iterations and grows

123

844 Autonomous Agents and Multi-Agent Systems (2018) 32:822–860

dramatically in few iterations at the end of the optimizing process. Formally, the value
propagation probability in iteration m is given by

p = e
m

Max_I ter −1

The overheads of Max-sum_ADPVP fall in between the one of Max-sum_ADVP and
the one of Max-sum_AD. Since Max-sum_ADPVP also operates on alternating DAGs and
follows the same message-passing scheme, the message number of Max-sum_ADPVP is
identical to the ones of Max-sum_AD and Max-sum_ADVP, and thus the extra overheads
mainly lie in computation. Specifically, function nodes in Max-sum_ADPVP with a small
value propagation probability p aremore likely to perform belief propagation inwhich O(d2)
operations are required to compute a message. Function nodes in Max-sum_ADPVP with a
large value propagation probability p are more likely to perform value propagation in which
O(d) operations are required to compute a message. Thus, Maxsum_ADPVP with a large
value propagation probability usually has small overheads.

6 Experimental evaluations

In this section, we first empirically study how parameters affect our algorithms. Then, we
present the solution qualities under different value propagation timings to explicitly demon-
strate our algorithms are less sensitive to the timings. Finally, we present comparisons on
the performances of our algorithms with DSA, ADPOP, and state-of-the-art Max-sum algo-
rithms.

6.1 Experimental configurations

We benchmark algorithms with four types of problems, i.e., random DCOPs, scale-free
networks, weighted graph coloring problems and random meeting scheduling problems.

– RandomDCOPs are the general form of the distributed constraint optimization problems.
In the experiments, we set the agent number to 120, the domain size to 10 and uniformly
select costs from [1,100] for each constraint.We consider problemswith the graph density
0.05 for the sparse configuration and 0.6 for the dense configuration.

– Scale-free networks [2] are networks whose degree distributions follow power laws. In
the experiments, we use Barabási-Albert (BA) model to generate the constraint graph
topology with an initial set of 15 agents. At each iteration of BA model procedure, a new
agent is connected to 3 other agents (for the sparse configuration) or 10 other agents (for
the dense configuration) with a probability that is proportional to the number of links
that the existing agents already have. The agent number, the domain size and the range
of constraint costs in scale-free networks are the same as the ones in random DCOPs.

– Weighted graph coloring problems are problems in which each vertex should be colored
and two adjacent vertexes should have different colors. In the experiments, we consider
weighted graph coloring problems with 120 agents, 3 available color for each agent. The
cost for each violation is uniformly selected from 1 to 100. The agent number and graph
density are the same as the ones in the sparse configuration of random DCOPs.

– Random meeting scheduling problems [15,39] are problems in which agents are trying to
schedule a set of meetings. For each pair of meetings, there is a randomly selected travel
time.When the difference between the time-slots of twomeetings with overlapping agent
is less than the travel time, the agents in both meetings are considered to be overbooked

123

Autonomous Agents and Multi-Agent Systems (2018) 32:822–860 845

Fig. 11 Solution qualities of Max-sum_ADSSVP (t) under different t on sparse random DCOPs

and the cost is defined to be the number of the overbooked agents. In the experiments, we
consider problems with 90 agents, 20 meetings and 20 available time-slots. Each agent
randomly chooses two meetings to participate and travel times are uniformly selected
from 6 to 10.

The competitors we consider in the experiments include Standard Max-sum, Max-
sum_AD,Max-sum_ADVP,Max-sum_ADVPwith explorationmethods,DampedMax-sum,
DSA-C (p = 0.4) and ADPOP. We have re-implemented all the algorithms and have
checked their performances against the original papers.6 For Max-sum_ADVP with explo-
ration methods, we consider Max-sum_ADVP with the combination ADV P_AD_ADV P
which improves Max-sum_ADVP most according to [39] For Damped Max-sum, we set the
damped factor to 0.9 according to [4]. For ADPOP, we set maxDim = 3. To guarantee con-
vergence, we set the length of a phase (or a round) ofMax-sum algorithms onDAGs to 40 (for
random meeting scheduling problems) or 240 (for the others), and stop all algorithms after
750 iterations (for randommeeting scheduling problems) or 4500 iterations (for the others). In
all theMax-sum algorithms, ties are broken by random personal preferences according to [7].
In our experiments, we uniformly select the preferences from [− 0.5, 0.5]. Besides, for the
algorithms that use value propagation and operate on DAGs, we start value propagation at the
beginning of the third phase unless otherwise specified. All experimental results are averaged
over 50 independently generated problems that are each solved by each algorithm 30 times.

6.2 Parameters tuning

6.2.1 Suitable parameters for Max-sum_ADSSVP-based algorithms

In this section, we explore the relationships between the solution qualities and the parameters
for Max-sum_ADSSVP-based algorithms, i.e., the length of consecutive value propagation
phase t for Max-sum_ADSSVP (t) and the local search algorithm for Max-sum_ADSSVP
with local search.

6 https://github.com/czy920/DCOPSovler

123

https://github.com/czy920/DCOPSovler

846 Autonomous Agents and Multi-Agent Systems (2018) 32:822–860

Fig. 12 Solution qualities of Max-sum_ADSSVPwith different local search algorithms andMax-sum_ADVP
on sparse random DCOPs

We first vary t from 1 to 5 and the corresponding solution qualities are shown in Fig. 11.
It can be seen from the figure that the solution qualities of algorithms with small t oscillate
wildly during the transitions from value propagation phases to belief propagation phases
(e.g., the 720-th iteration and the 1200-th iteration for t = 1, the 960-th iteration for t = 2
etc.). The algorithms with large t (e.g., t = 4 or t = 5), on the other hand, usually have
moderate transitions. For example, the first transition of Max-sum_ADSSVP (t = 1) occurs
in the 720-th iteration and the corresponding amplitude is 14.6%, while the first transition of
Max-sum_ADSSVP (t = 5) occurs in the 1680-th iteration and the corresponding amplitude
is only 10.2%. However, Fig. 11 also indicates that the algorithms with large t usually could
be dominated by the algorithms with smaller t . This is because the large t makes agents less
opportunities to perform exploration. For example, agents in Max-sum_ADSSVP (t = 5)
only perform 3 phases of belief propagation after enabling value propagation, while agents
in Max-sum_ADSSVP (t = 1) perform 9 phases of belief propagation. Thus, according to
the result, we choose t = 2 for Max-sum_ADSSVP (t).

We compare the solution qualities of Max-sum_ADSSVP with DSA, MGM and MGM2.
We set the length of the refining phase to 50 and the result is presented in Fig. 12. It can be seen
from the result that all the three combinations outperform Max-sum_ADVP and the solution
qualities are similar when DSA and MGM are applied into Max-sum_ADSSVP. MGM2,
on the other hand, provides more substantial improvements every refining phase and yields
more modest transitions, which also demonstrates that the solution quality at the end of a
value propagation phase has a critic impact on the next phase of belief propagation. Thus, we
choose MGM2 as the refiner for Max-sum_ADSSVP with local search in our experiments.

6.2.2 Suitable adaptation for Max-sum_ADPVP

In this section,we empirically study the solution qualities ofMax-sum_ADPVPwith different
adaptations. To demonstrate the adaptation of the value propagation probability,we start value
propagation at the first iteration and present the result in Fig. 13.

123

Autonomous Agents and Multi-Agent Systems (2018) 32:822–860 847

Fig. 13 Solution qualities of Max-sum_ADPVP with different adaptations on sparse random DCOPs

It can be observed that the solution qualities of adaptations except exponential adaptation
oscillate modestly at the beginning of the execution. That is because the value propagation
probabilities in those adaptations are very small at the beginning of execution. Since the
value propagation probability in negative quadratic adaptation is strictly greater than the one
in linear adaptation at any iteration other than the first and the last iteration, the algorithm
with NQA is more exploitative and converges earlier than the one with LA. Similarly, the
value propagation probability in positive quadratic adaptation is strictly less than the one
in linear adaptation in most of the iterations, thus the algorithm with PQA performs more
exploration and converges slowly than the one with LA. Exponential adaptation, on the other
hand, retains the value propagation probability at a low level in most of the iterations and
dramatically increases the probability at the end of the execution. The unbalance makes the
solution quality oscillatewildly and eventually yields a poor solution. Thus, in our experiment
we use linear adaptation to adapt Max-sum_ADPVP.

6.2.3 Value propagation timings for our proposed algorithms

In this section, we demonstrate our proposed algorithms (i.e., Max-sum_ADSSVP (t),
Max-sum_ADSSVP with local search and Max-sum_ADPVP) are less sensitive to value
propagation timings which is a critic impact on the solution qualities of Max-sum_ADVP.
We do not include Max-sum_HBVP here since the algorithm requires value propagation
from the first iteration and hence the value propagation timing is not adjustable. We vary
the value propagation timing from the first phase to the fifth phase and present the anytime
results in Fig. 14. All the parameters are set according to Sects. 6.2.1 and 6.2.2.

It can be seen from the figure that our algorithms have similar performances under dif-
ferent value propagation timings while the solution qualities of Max-sum_ADVP vary a lot,
which indicates our algorithms are less sensitive to value propagation timings and thus over-
come the drawback of timing selection in Max-sum ADVP. That is because agents in our
algorithms still have opportunities to make decisions beyond local constraints after enabling
value propagation. As a result, agents could break out of local optima and alleviate some neg-
ative impacts brought by the assignments of their neighbors. Max-sum_ADVP, on the other

123

848 Autonomous Agents and Multi-Agent Systems (2018) 32:822–860

(a) (b)

(c) (d)

Fig. 14 Anytime solution qualities of the algorithms under different value propagation timings on sparse
random DCOPs: a anytime solution qualities of Max-sum_ADSSVP(t = 2), b anytime solution qualities of
Max-sum_ADSSVP with MGM2, c anytime solution qualities of Max-sum_ADPVP with linear adaptation,
d anytime solution qualities of Max-sum_ADVP

hand, monotonically optimizes solutions after the first convergence of value propagation.
Thus, agents in Max-sum_ADVP now make decisions entirely based on local constraints
and the assignments of their neighbors. Consequently, Max-sum_ADVP is sensitive to initial
assignments, as well as the value propagation timings. Besides, it is interesting to find that
all the algorithms report the best results when starting value propagation at the 4-th phase.
But note that the best timing of starting value propagation is problem-specific and usually
presented as an empirical value.

6.3 Performance comparisons

In this section, we consider the performances of the algorithms. Particularly, we consider
the solution qualities and runtime when the algorithms terminate. Tables 1 and 2 give the
solution qualities and runtime (in milliseconds) of these algorithms on different benchmarks,
respectively.

Regarding the solution quality, our proposed Max-sum algorithms with non-consecutive
value propagation strategies produce better solutions than the other algorithms in each bench-
marks. Specifically, our algorithms improveMax-sum_ADVPby 9.1–10.5%and 10.1–12.0%
when solving the sparse random DCOPs and scale-free networks. For the dense problems,
however, the differences among these algorithms are narrowed. That is partially due to the
high cost base in over-constrained problems. Despite the complexity of the dense problems,

123

Autonomous Agents and Multi-Agent Systems (2018) 32:822–860 849

our proposed algorithms still improve Max-sum_ADVP by 0.8–1.1% and 2.8–4.1% when
solving the dense random DCOPs and scale-free networks.

Besides, our proposed algorithms exhibit excellent performances when solving problems
with structured cost functions. It is noticeable that our algorithms outperform Max-
sum_ADVPby 48.1–53.3%when solvingweighted graph coloring problems. That is because
Max-sum_ADVP is biased by local benefitswhich could severely conflictwith the global ben-
efit in those problems. It is worth mentioning that Max-sum_ADSSVP_MGM2 is slightly
inferior to Max-sum_ADVP when solving random meeting scheduling problems. That is
because Max-sum_ADSSVP_MGM2 was performing belief propagation before it termi-
nated. As a result, it reports the solutions which are not optimized by value propagation
phase and local search phase. Additionally, it is interesting to find that Max-sum_HBVP
reports the best solutions among the competitors in the most benchmarks, which demon-
strates the power of hybrid execution of value propagation and belief propagation. That is
because agents in the algorithm always make decisions by considering the valid assignment
information, and thus the optimization process is efficiently boosted.

It can be seen from Table 2 that Standard Max-sum and Damped Max-sum spend much
more time than the other Max-sum algorithms in every benchmark. That is because the
agents in these two algorithms send messages to all their neighbors. As a local search algo-
rithm, DSA require less time than the other iterative algorithms. On the other hand, since
ADPOP is a one-shot algorithm, it spends the least time in most of the benchmarks. How-
ever, ADPOP requires the most time when solving random meeting scheduling problems.
That is because the domain size in the problems is relatively large (20 available time slots).
As a consequence, the algorithm needs more operations to perform variable elimination.
Additionally, it can be concluded that our algorithms excepts Max-sum_HBVP spend time
as much as Max-sum_ADVP, which indicates that our algorithms incur modest extra over-
heads. Max-sum_HBVP requires little time even in the dense problems. That is because each
node in Max-sum_HBVP only produces messages twice a round, and thus the total number
of messages exchanged in a round is linear to the number of constraints.

It can be concluded from Tables 1 and 2 that our proposed algorithms are suitable for
the scenarios where solution quality is an important concern but the computation and com-
munication resources are limited (e.g., coordinating low-power embed devices). In more
detail, although DSA and ADPOP require little time in the most of cases, they fail to pro-
duce high-quality solutions. Max-sum_ADVP and Max-sum_ADVP with the combination
ADVP_AD_ADVP, on other hands, produce better solutions than DSA and ADPOP in some
cases, but incur more computation overheads. In contrast, as we discussed earlier, our pro-
posed algorithms have smaller overheads thanMax-sum_ADVP and produce solutionswhich
are significantly better than the ones produced by DSA and ADPOP. Besides, it is worth men-
tioning that Max-sum_HBVP actually has a smaller communication overhead than DSA in
practice, since the number of messages exchanged in a round of Max-sum_HBVP is only a
double of the one in an iteration of DSA.

6.4 Convergence analyses

In this section, we consider the convergence behavior of each algorithm on different bench-
marks, i.e., solution quality per iteration and anytime result per iteration. Figures 15 and 16
present the comparisons of solution qualities and anytime results on the sparse random
DCOPs. We omit the dense configuration for the similar trend.

123

850 Autonomous Agents and Multi-Agent Systems (2018) 32:822–860

Ta
bl
e
1

So
lu
tio

n
qu

al
iti
es

of
al
go

ri
th
m
s
on

di
ff
er
en
tb

en
ch
m
ar
ks

A
lg
or
ith

m
s

R
an
do

m
D
C
O
Ps

Sc
al
e-
fr
ee

ne
tw
or
ks

W
ei
gh

te
d
gr
ap
h
co
lo
ri
ng

R
an
do

m
m
ee
tin

g
sc
he
du

lin
g

Sp
ar
se

D
en
se

Sp
ar
se

D
en
se

St
an
da
rd

M
ax
-s
um

15
31

7
20

92
68

13
87

3
49

86
6

13
94

6
12

29

M
ax
-s
um

_A
D

11
12

1
18

90
40

96
29

40
43

4
28

08
39

3

M
ax
-s
um

A
D
V
P

83
38

17
93

25
75

25
36

13
6

81
2

24
5

A
D
V
P_

A
D
_A

D
V
P

84
08

18
05

03
72

20
35

50
8

12
90

37
3

D
am

pe
d
M
ax
-s
um

86
63

18
25

64
79

89
38

90
0

22
39

35
0

D
SA

87
51

17
93

48
79

26
36

27
5

89
1

26
3

A
D
PO

P
90

47
18

64
44

77
85

38
16

9
10

03
27

6

M
ax
-s
um

_A
D
SS

V
P
(t

=
2)

75
82

17
78

14
67

60
35

11
8

41
3

21
6

M
ax
-s
um

_A
D
SS

V
P_

M
G
M
2

75
20

17
80

17
66

76
34

98
2

38
5

24
7

M
ax
-s
um

_H
B
V
P

74
65

17
73

17
66

20
34

63
8

37
9

22
4

M
ax
-s
um

A
D
PV

P
74

75
17

74
50

66
35

34
81

0
42

1
21

2

T
he

be
st
re
su
lts

ar
e
sh
ow

n
in

bo
ld

123

Autonomous Agents and Multi-Agent Systems (2018) 32:822–860 851

Ta
bl
e
2

R
un

tim
e
(i
n
m
ill
is
ec
on

ds
)
of

al
go

ri
th
m
s
on

di
ff
er
en
tb

en
ch
m
ar
ks

A
lg
or
ith

m
s

R
an
do

m
D
C
O
Ps

Sc
al
e-
fr
ee

ne
tw
or
ks

W
ei
gh

te
d
gr
ap
h
co
lo
ri
ng

R
an
do

m
m
ee
tin

g
sc
he
du

lin
g

Sp
ar
se

D
en
se

Sp
ar
se

D
en
se

St
an
da
rd

M
ax
-s
um

89
58

43
26

2
93

27
12

21
1

86
71

64
1

M
ax
-s
um

_A
D

84
24

23
90

8
87

54
98

92
81

07
45

6

M
ax
-s
um

A
D
V
P

79
68

22
17

8
84

27
97

50
83

86
40

7

A
D
V
P_

A
D
_A

D
V
P

81
88

26
93

0
85

97
95

11
81

18
49

8

D
am

pe
d
M
ax
-s
um

88
18

40
59

8
91

58
11

20
6

85
37

95
2

D
SA

18
87

24
50

20
21

20
66

18
38

35
1

A
D
PO

P
60

3
10

73
58

1
72

4
63

5
27

12

M
ax
-s
um

_A
D
SS

V
P
(t

=
2)

79
36

22
59

3
85

76
95

78
85

06
43

6

M
ax
-s
um

_A
D
SS

V
P_

M
G
M
2

84
37

22
98

4
83

82
97

25
76

50
42

1

M
ax
-s
um

_H
B
V
P

72
97

89
99

74
62

77
13

76
16

38
2

M
ax
-s
um

A
D
PV

P
82

13
22

57
2

86
04

94
98

80
89

46
9

123

852 Autonomous Agents and Multi-Agent Systems (2018) 32:822–860

(a) (b)

(c) (d)

Fig. 15 Solution qualities on sparse random DCOPs

It can be seen from the results that Standard Max-sum does not converge and traverses
states with low qualities. However, although it can guarantee the convergence within a single
phase, Max-sum_AD also fails to produce a high quality solution. That is because neither
Standard Max-sum nor Max-sum_AD can eliminate invalid assignment assumptions and
break ties in beliefs. Max-sum_ADVP performs value propagation after the second conver-
gence (i.e., the 481-st iteration) and monotonically optimizes the solution after the 721-st
iteration. Since value propagation can eliminate invalid assignment assumptions and break
ties in beliefs, Max-sum_ADVP eventually yields a relative higher quality solution. How-
ever,Max-sum_ADVP cannot perform any further optimization after the end of the 6-th phase
(i.e., 1480-th iteration), which indicates that the algorithm has got trapped in local optima.
Max-sum_ADVP with the combination ADV P_AD_ADV P tries to mitigate the problem
by taking advantage of the differing balance of exploration and exploitation inMax-sum_AD
and Max-sum_ADVP. Unfortunately, the algorithm fails to suppress cost fluctuations effec-
tively and the solution quality still oscillates wildly even at the end of the execution. That is
due to the fact that the algorithm always performs two consecutive belief phases after two
value propagation phases and thus agents cannot utilize any assignment information in the
later belief propagation phase. Damped Max-sum attempts to improve Standard Max-sum
by decreasing the effect of cyclic information propagation. However, the results indicate that
Damped Max-sum is still inferior to Max-sum_ADVP. DSA converges very quickly since
agents make decisions in parallel by considering only local information. As a result, DSA
cannot further improve its solutions after 50 iterations. ADPOP finds the solutions that are
better than the ones in Standard Max-sum and Max-sum_AD, but it is still inferior to DSA.

123

Autonomous Agents and Multi-Agent Systems (2018) 32:822–860 853

Fig. 16 Anytime solution qualities on sparse random DCOPs

In contrast, our algorithms achieve good balances between exploration and exploitation
and substantially improve the solution quality of Max-sum_ADVP. It can be observed from
Fig. 15a, b thatMax-sum_ADSSVP (t = 2) andMax-sum_ADSSVPwithMGM2 iteratively
refine the solutions after enabling value propagation. It is notable that Max-sum_ADSSVP
with MGM2 eventually outperforms all the competitors after about 1250 iterations. More-
over, it is worth mentioning that although both Max-sum_ADVP with the combination
ADV P_AD_ADV P and our proposed Max-sum_ADSSVP cannot guarantee the cross-
phase convergence, the cost fluctuations in our algorithms are much smaller than the ones
in Max-sum_ADVP with the combination ADV P_AD_ADV P . Besides, there are sig-
nificant decreases of the amplitudes of the cost fluctuations, which also indicates that the
belief propagation phases and the value propagation phases in our algorithms can collaborate
with each other to effectively suppress the cost fluctuations. It can be seen from Fig. 15c
that Max-sum_HBVP transcends all the competitors after about 2400 iterations. Besides,
Fig. 15c also indicates that Max-sum_HBVP can guarantee the single-phase convergence,
which is not surprising since we have imposed a constraint on the decision-making tim-
ing such that each variable node only makes a decision in a round. According to Fig. 15d,
Max-sum_ADPVP_LA performs close to Max-sum_AD in the first 960 iterations and then
improves dramatically and finally outperforms all the competitors after the 2600-th itera-
tion. This is because the value propagation probability is very small in the beginning of the
execution and the algorithm behaves like Max-sum_AD. With the probability growing, the
algorithm becomes more and more exploitative and finally behaves like Max-sum_ADVP.

It can be concluded that Damped Max-sum outperforms all other algorithms when con-
sidering anytime results in Fig. 16. That is because damping triggers efficient exploration by
Max-sum, and the good solutions are cached by the anytime mechanism in time. However, it
does not mean that Damped Max-sum with anytime mechanism is suitable for all scenarios.
In fact, anytimemechanism requires extra communication and storage overheads to construct
BFS trees and retain the best assignments. Moreover, since a node in the algorithm produces
messages to every neighbor, Damped Max-sum incurs much more overheads than Max-sum
variants operating on DAGs. In other words, Damped Max-sum with anytime mechanism
is not suitable for the scenarios where computation and communication resources are lim-

123

854 Autonomous Agents and Multi-Agent Systems (2018) 32:822–860

(a) (b)

(c) (d)

Fig. 17 Solution qualities on sparse scale-free networks

Fig. 18 Anytime solution qualities on sparse scale-free networks

ited. Figure 16 also shows that there are noticeable improvements every value propagation
phase and refining phase, which indicates that our proposed Max-sum_ADSSVP algorithms
achieve a good balance between exploration and exploitation. Moreover, It is worth men-
tioning that Max-sum_ADSSVP_MGM2 outperforms all the competitors except Damped
Max-sum after 800 iterations, which demonstrates the power of hybrid execution of local
search and value propagation.

123

Autonomous Agents and Multi-Agent Systems (2018) 32:822–860 855

(a) (b)

(c) (d)

Fig. 19 Solution qualities on weighted graph coloring problems

Figures 17 and 18 present the solution qualities and corresponding anytime solution qual-
ities when solving the sparse scale-free network problems. Here, we also omit the dense
configuration for the similar trend. It can be seen from the figures that StandardMax-sum still
performs poor due to the existences of invalid assumptions and ties in beliefs. Max-sum_AD
finds the solutions with lower costs than Standard Max-sum in the first two convergences,
but its solution qualities oscillate in a broad range in the third and the subsequent phases.
DSA converges quickly and produces the solutions that are slightly inferior to ADPOP.
Max-sum_ADVP finds the solutions with much higher qualities than Max-sum_AD, fur-
ther provides monotonic optimizations to the solutions found in the end of the third phase,
and outperforms DSA at the end of the execution. During the whole optimization process,
Damped Max-sum strictly dominates all the algorithms except Max-sum_HBVP and DSA
with the help of the anytime mechanism, but it is still inferior to Max-sum_ADVP in terms of
the current costs. Max-sum_ADVP with the combination ADV P_AD_ADV P finds better
solutions than Max-sum_ADVP at the sixth phase and the subsequent ADVP phases, but it
fails to suppress the cost oscillations in the transitions from ADVP phases to AD phases.
Max-sum_ADSSVP (t = 2) and Max-sum_ADSSVP with MGM2 find the solutions which
are superior to the ones of Max-sum_ADVP after the 1440-th iteration and the 770-th iter-
ation under the anytime mechanism. Max-sum_HBVP transcends Max-sum_ADVP after
4 hybrid executions of belief propagation and value propagation. The stochastic nature of
Max-sum_ADPVP allows variable nodes to consider information beyond local constraints,
and thus Max-sum_ADPVP_LA finds better anytime solutions than Max-sum_ADVP after
the 1920-th iteration.

123

856 Autonomous Agents and Multi-Agent Systems (2018) 32:822–860

Fig. 20 Anytime solution qualities on weighted graph coloring problems

Figures 19 and 20 present the results and anytime results when solving weighted graph
coloring problems.With the help of the random personal preferences, StandardMax-sum and
DampedMax-sumcan break ties andfind better solutions than the other competitors that oper-
ate on alternatingDAGs at the beginning of the execution. However, aswe discuss in Sect. 4.3,
agents in StandardMax-sum cannot propagate any useful information but the personal prefer-
ences. As a result, agents in Standard Max-sum arbitrarily make decisions and the algorithm
performs poorly in the subsequent iterations. Although Max-sum_AD also uses the random
personal preferences to break ties, it performs much better than Standard Max-sum, which
indicates that Max-sum_AD is more exploitative than Standard Max-sum. Max-sum_ADVP
excels Max-sum_AD after enabling value propagation, but soon gets stuck in local optima.
It can be seen that Max-sum_ADVP produces the solutions which have the similar qualities
with the ones in DSA at the end of the execution, which also demonstrates Max-sum_ADVP
eventually behaves like a greedy local search algorithm. Max-sum_ADVP with combina-
tion ADV P_AD_ADV P finds better solutions than Max-sum_ADVP at the tenth phase,
but it fails to provide further optimization in the subsequent Max-sum_ADVP phases. Max-
sum_ADSSVP (t = 2) and Max-sum_ADSSVP with MGM2 find the anytime results better
than the other competitors after the 1440-th iteration and the 770-th iteration. Besides, it is
worth mentioning that Max-sum_HBVP finds the anytime solutions better and more quickly
than all the competitors except DSA and ADPOP at the beginning of the execution, which
indicates that value propagation can break tiesmore effectively than the randompersonal pref-
erences. Max-sum_ADPVP_LA optimizes the solutions by gradually increasing the value
propagation probability, and outperforms all the competitors after the 3120-th iteration.

Figures 21 and 22 present the results and anytime results when solving random meeting
scheduling problems. Since the cost functions in the problems are also highly structured,
belief ties make Standard Max-sum barely optimize the solutions. In contrast, Max-sum_AD
produces much better solutions by strictly controlling the loopy information propagation.
Max-sum_ADVP finds better solutions than StandardMax-sum,Max-sum_AD and Damped
Max-sum at the third phase, slowly optimizes the solutions in the subsequent phases, and
eventually outperforms DSA and ADPOP. ADV P_V P_ADV P tries to improve Max-
sum_ADVP by combining Max-sum_AD and Max-sum_ADVP. However, it can be seen

123

Autonomous Agents and Multi-Agent Systems (2018) 32:822–860 857

(a) (b)

(c) (d)

Fig. 21 Solution qualities on random meeting scheduling problems

Fig. 22 Anytime solution qualities on random meeting scheduling problems

from Fig. 21 that the algorithm only outperforms Max-sum_ADVP at the 6-th VP phase
(i.e., from the 520-th iteration to the 560-th iteration). Our proposed Max-sum_ADSSVP
algorithms iteratively refine the solutions after enabling value propagation, and excel Max-
sum_ADVP in terms of anytime results after 240 iterations and 150 iterations, respectively.

123

858 Autonomous Agents and Multi-Agent Systems (2018) 32:822–860

Additionally, Max-sum_HBVP outperforms all Max-sum algorithms at the beginning of the
execution, which shows that value propagation can effectively break ties. As the algorithm
proceeds, Max-sum_ADPVP_LA uniformly transforms from the most explorative one to the
most exploitative one, and finally outperforms Max-sum_ADVP after 580 iterations.

7 Conclusion

In this paper, we first theoretically analyze how value propagation affects the Max-sum_AD
algorithm. We prove that although value propagation can greatly improve the solution qual-
ities of Max-sum_AD, it blocks belief propagation and thus agents in Max-sum_ADVP
can only consider local constraints and follow the decision-making strategy of a greedy local
search algorithm.As a result,Max-sum_ADVPbecomes entirely exploitative after the second
phase of value propagation. To overcome the defect, we propose severalMax-sum algorithms
with novel non-consecutive value propagation strategies which can balance exploration and
exploitation.

Our first attempt is to alternatively execute Max-sum_AD and Max-sum_ADVP and
we propose an algorithm called Max-sum_ADSSVP. Different from the two-phase exe-
cution in Max-sum_ADVP, value propagation in Max-sum_ADSSVP is always executed
in the same direction. Unfortunately, we notice that the algorithm no longer guarantees
monotonicity and the cross phase convergence, and the solution qualities oscillates wildly
during the transitions from value propagation phases to belief propagation phases in prac-
tice. We alleviate the pathology by providing higher-quality solutions before switching to
belief propagation phases, and propose two algorithms called Max-sum_ADSSVP (t) and
Max-sum_ADSSVP_LS. They improve the solution quality by multiple phases of value
propagation and local search, respectively. Besides, we find that the out-of-date assignment
information also contributes to the oscillation. We overcome the defect by proposing a novel
algorithm calledMax-sum_HBVP inwhich value propagation and belief propagation are exe-
cuted simultaneously from two opposite ends of a DAG and each variable node only makes
a decision when receiving value propagation messages from all its upstream neighbors in
a round. We finally use stochasticity to balance exploration and exploitation, and present
an algorithm called Max-sum_ADPVP. In the algorithm, each function node stochastically
decides to perform value propagation or belief propagation according to a probability p.
Besides, we further extend the algorithm by adapting p along with the optimization process
via four adaptations. Our empirical evaluations have demonstrated the superiorities of our
proposed algorithms on various benchmarks.

We notice that personal preferences and value propagation are two main techniques to
break ties in Max-sum algorithms. However, as we have demonstrated earlier, personal pref-
erences cannot effectively break ties in most cases. Value propagation, on the other hand,
could block belief propagation and make agents consider only local functions. In the future,
we will explore other methods to effectively break ties and still keep a balance between
exploration and exploitation.

References

1. Aji, S. M., &McEliece, R. J. (2000). The generalized distributive law. IEEE Transactions on Information
Theory, 46(2), 325–343.

123

Autonomous Agents and Multi-Agent Systems (2018) 32:822–860 859

2. Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439),
509–512.

3. Chen, Z., Deng, Y., & Wu, T. (2017). An iterative refined Max-sum_ad algorithm via single-side value
propagation and local search. InProceedings of the 16th conference on autonomous agents andmultiagent
systems (pp. 195–202). International Foundation for Autonomous Agents and Multiagent Systems.

4. Cohen, L., & Zivan, R. (2017). Max-sum revisited: The real power of damping. In Proceedings of the 16th
conference on autonomous agents and multiagent systems (pp. 1505–1507). International Foundation for
Autonomous Agents and Multiagent Systems.

5. Dechter, R. (1999). Bucket elimination: A unifying framework for reasoning. Artificial Intelligence,
113(1), 41–85.

6. Enembreck, F., & Barths, J. P. A. (2012). Distributed constraint optimization with mulbs: A case study
on collaborative meeting scheduling. Journal of Network and Computer Applications, 35(1), 164–175.

7. Farinelli, A., Rogers, A., Petcu, A., & Jennings, N. R. (2008). Decentralised coordination of low-power
embedded devices using the Max-sum algorithm. In Proceedings of the 7th international joint confer-
ence on autonomous agents and multiagent systems (Vol. 2, pp. 639–646). International Foundation for
Autonomous Agents and Multiagent Systems.

8. Gershman, A., Meisels, A., & Zivan, R. (2009). Asynchronous forward bounding for distributed cops.
Journal of Artificial Intelligence Research, 34, 61–88.

9. Hirayama, K., & Yokoo, M. (2005). The distributed breakout algorithms. Artificial Intelligence, 161(1),
89–115.

10. Katagishi, H., & Pearce, J. P. (2007). Kopt: Distributed dcop algorithm for arbitrary k-optima with
monotonically increasing utility. In Ninth DCR workshop (CP-07).

11. Kschischang, F. R., Frey, B. J., & Loeliger, H. A. (2001). Factor graphs and the sum-product algorithm.
IEEE Transactions on Information Theory, 47(2), 498–519.

12. Leite, A. R., Enembreck, F., & Barthès, J. P. A. (2014). Distributed constraint optimization problems:
Review and perspectives. Expert Systems with Applications, 41(11), 5139–5157.

13. Litov, O., & Meisels, A. (2017). Forward bounding on pseudo-trees for dcops and adcops. Artificial
Intelligence, 252, 83–99.

14. Maheswaran, R. T., Pearce, J. P., & Tambe, M. (2004). Distributed algorithms for dcop: A graphical-
game-based approach. In ISCA PDCS (pp. 432–439).

15. Meisels, A., & Lavee, O. (2004). Using additional information in discsp search. InDistributed constraint
reasoning workshop (DCR).

16. Modi, P. J., Shen, W. M., Tambe, M., & Yokoo, M. (2005). Adopt: Asynchronous distributed constraint
optimization with quality guarantees. Artificial Intelligence, 161(1), 149–180.

17. Netzer, A., Grubshtein, A., &Meisels, A. (2012). Concurrent forward bounding for distributed constraint
optimization problems. Artificial Intelligence, 193, 186–216.

18. Nguyen, D. T., Yeoh, W., & Lau, H. C. (2013). Distributed gibbs: A memory-bounded sampling-based
dcop algorithm. In Proceedings of the 12th international conference on autonomous agents and multi-
agent systems (pp. 167–174). International Foundation for Autonomous Agents and Multiagent Systems.

19. Okimoto, T., Joe, Y., Iwasaki, A., Yokoo, M., & Faltings, B. (2011). Pseudo-tree-based incomplete algo-
rithm for distributed constraint optimizationwith quality bounds. In International conference on principles
and practice of constraint programming (pp. 660–674). Springer.

20. Ottens, B., Dimitrakakis, C., & Faltings, B. (2017). Duct: An upper confidence bound approach to dis-
tributed constraint optimization problems. ACM Transactions on Intelligent Systems and Technology,
8(5), 69.

21. Pearce, J. P., & Tambe, M. (2007). Quality guarantees on k-optimal solutions for distributed constraint
optimization problems. In International joint conference on artifical intelligence (pp. 1446–1451)

22. Petcu, A., & Faltings, B. (2005). Approximations in distributed optimization. In International conference
on principles and practice of constraint programming (pp. 802–806). Springer.

23. Petcu, A., & Faltings, B. (2005). A scalablemethod formultiagent constraint optimization. InProceedings
of the 19th international joint conference on artificial intelligence (pp. 266–271).

24. Petcu, A., & Faltings, B. (2006). Odpop: An algorithm for open/distributed constraint optimization. In
Proceedings of the 21st national conference on artificial intelligence (pp. 703–708). AAAI Press.

25. Petcu, A., & Faltings, B. (2007). Mb-dpop: A new memory-bounded algorithm for distributed optimiza-
tion. In Proceedings of the 20th international joint conference on artifical intelligence (pp. 1452–1457).
Morgan Kaufmann Publishers Inc.

26. Petcu, A., & Faltings, B. (2008). Distributed constraint optimization applications in power networks.
International Journal of Innovations in Energy Systems and Power, 3(1), 1–12.

27. Rogers, A., Farinelli, A., Stranders, R., & Jennings, N. R. (2011). Bounded approximate decentralised
coordination via the Max-sum algorithm. Artificial Intelligence, 175(2), 730–759.

123

860 Autonomous Agents and Multi-Agent Systems (2018) 32:822–860

28. Rollon, E., & Larrosa, J. (2012). Improved bounded Max-sum for distributed constraint optimization. In
Proceedings of the 18th international conference on principles and practice of constraint programming
(Vol. 7514, pp. 624–632). Berlin, Heidelberg: Springer.

29. Rollon, E., & Larrosa, J. (2014). Decomposing utility functions in bounded Max-sum for distributed
constraint optimization. In International conference on principles and practice of constraint programming
(pp. 646–654). Springer.

30. Steven, O., Roie, Z., & Aviv, N. (2016). Distributed breakout: Beyond satisfaction. In Proceedings of the
twenty-fifth international joint conference on artificial intelligence (pp. 447–453).

31. Sultanik, E., Modi, P. J., & Regli, W. C. (2007). On modeling multiagent task scheduling as a distributed
constraint optimization problem. In IJCAI (pp. 1531–1536).

32. Vinyals, M., Rodriguez-Aguilar, J. A., & Cerquides, J. (2009). Generalizing dpop: Action-gdl, a new
complete algorithm for dcops. In Proceedings of The 8th international conference on autonomous agents
and multiagent systems (Vol. 2, pp. 1239–1240). International Foundation for Autonomous Agents and
Multiagent Systems.

33. Yeoh, W., Felner, A., & Koenig, S. (2010). Bnb-adopt: An asynchronous branch-and-bound dcop algo-
rithm. Journal of Artificial Intelligence Research, 38, 85–133.

34. Yokoo, M., Durfee, E. H., Ishida, T., & Kuwabara, K. (1998). The distributed constraint satisfaction
problem: Formalization and algorithms. IEEE Transactions on knowledge and data engineering, 10(5),
673–685.

35. Yu, Z., Chen, Z., He, J., & Deng, Y. (2017). A partial decision scheme for local search algorithms for
distributed constraint optimization problems. InProceedings of the 16th conference on autonomous agents
and multiagent systems (pp. 187–194). International Foundation for Autonomous Agents and Multiagent
Systems.

36. Zhang, W., Wang, G., Xing, Z., & Wittenburg, L. (2005). Distributed stochastic search and distributed
breakout: properties, comparison and applications to constraint optimization problems in sensor networks.
Artificial Intelligence, 161(1), 55–87.

37. Zilberstein, S. (1996). Using anytime algorithms in intelligent systems. Ai Magazine, 17(3), 73–83.
38. Zivan, R., Okamoto, S., & Peled, H. (2014). Explorative anytime local search for distributed constraint

optimization. Artificial Intelligence, 212, 1–26.
39. Zivan, R., Parash, T., Cohen, L., Peled, H., & Okamoto, S. (2017). Balancing exploration and exploitation

in incomplete min/max-sum inference for distributed constraint optimization. Autonomous Agents and
Multi-Agent Systems,. https://doi.org/10.1007/s10458-017-9360-1.

40. Zivan, R., & Peled, H. (2012). Max/min-sum distributed constraint optimization through value propaga-
tion on an alternating dag. In Proceedings of the 11th international conference on autonomous agents
and multiagent systems (Vol. 1, pp. 265–272). International Foundation for Autonomous Agents and
Multiagent Systems.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

123

https://doi.org/10.1007/s10458-017-9360-1

	A class of iterative refined Max-sum algorithms via non-consecutive value propagation strategies
	Abstract
	1 Introduction
	2 Related work
	3 Distributed constraint optimization problems
	4 Algorithm preliminaries
	4.1 Standard Max-sum
	4.2 Max-sum_AD
	4.3 Max-sum_ADVP

	5 Proposed methods
	5.1 Motivation
	5.2 Max-sum_AD with single-side value propagation
	5.3 Max-sum with hybrid belief/value propagation in a DAG
	5.4 Max-sum_AD with probabilistic value propagation

	6 Experimental evaluations
	6.1 Experimental configurations
	6.2 Parameters tuning
	6.2.1 Suitable parameters for Max-sum_ADSSVP-based algorithms
	6.2.2 Suitable adaptation for Max-sum_ADPVP
	6.2.3 Value propagation timings for our proposed algorithms

	6.3 Performance comparisons
	6.4 Convergence analyses

	7 Conclusion
	References

