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Abstract

Distributed constraint optimization problems
(DCOPs) are a powerful model for multi-agent
coordination and optimization, where informa-
tion and controls are distributed among multiple
agents by nature. However, most of incomplete
algorithms for DCOPs are context-free, i.e., agents
make a decision purely based on the state of their
neighbors, which makes them prone to get trapped
in poor local convergence. On the other hand,
context-based algorithms use tables to exactly
store all the information (e.g., costs, confidence
bounds), which limits their scalability. This paper
tackles the limitation by incorporating deep neural
networks in solving DCOPs for the first time and
presents a neural context-based sampling scheme
built upon regret-matching. In the algorithm, each
agent trains a neural network to approximate the
regret related to its local problem under current
context and performs sampling according to the
estimated regret. Furthermore, to ensure explo-
ration, we propose a regret rounding scheme that
rounds small regret values to positive numbers.
We theoretically show the regret bound of our
algorithm and extensive evaluations indicate that
our algorithm can scale up to large-scale DCOPs
and significantly outperform the state-of-the-art
methods.

1 Introduction
Distributed constraint optimization problems (DCOPs)
[Fioretto et al., 2018; Modi et al., 2005] are a power-
ful model for multi-agent coordination and optimization, in
which agents cooperatively find assignments that maximize
a global objective. Due to their ability to model scenarios
where information and controls are distributed among mul-
tiple agents, DCOPs have been successfully deployed into
many real-world applications including radio channel alloca-
tion [Monteiro et al., 2012], vessel navigation [Hirayama et
al., 2019] and resource management [Fioretto et al., 2017].

Most algorithms for DCOPs generally follow search or in-
ference strategy. The search-based algorithms either perform

an exhaustive distributed backtrack search to guarantee opti-
mality [Hirayama and Yokoo, 1997; Litov and Meisels, 2017;
Modi et al., 2005; Yeoh et al., 2010] or iteratively optimize
the solution by using hill-climbing [Maheswaran et al., 2004;
Okamoto et al., 2016; Zhang et al., 2005]. Additionally,
some regret-based local search algorithms [Chapman et al.,
2011] cast a DCOP to a potential game and iteratively approx-
imate equilibria via regret-matching [Hart and Mas-Colell,
2000]. In contrast, inference-based algorithms use dynamic
programming [Petcu and Faltings, 2005; Vinyals et al., 2011]
or belief propagation [Farinelli et al., 2008] to indirectly ex-
plore the solution space. Finally, sampling-based techniques
[Nguyen et al., 2019; Ottens et al., 2017] are the emerg-
ing state-of-the-art incomplete methods for medium-scale
DCOPs, which perform sequential sampling on a pseudo tree.

Most of incomplete algorithms for DCOPs are context-
free, i.e., agents make a decision purely based on the state
of their neighbors, which makes them prone to get trapped
in poor local convergence since agents communicate their
preferred decision based on the preferred decision of their
neighbors [Farinelli et al., 2008]. While DUCT [Ottens et
al., 2017] tries to remedy the problem by exactly storing an
upper confidence bound (i.e., an optimistic estimation of the
optimal utility value for the subproblem of an agent) for each
context and assignment, it may need considerable rounds to
make the bounds informative. Besides, exactly storing all
confidence bounds requires exponential memory in the worst
case, which severely limits its scalability.

Recent advances in deep reinforcement learning (deep RL)
[François-Lavet et al., 2018] have demonstrated the great po-
tential of neural network for function approximation in han-
dling large state space. Instead of storing information exactly
in a table, deep RL uses deep neural networks to represent
state or policy compactly and has led to tremendous suc-
cess in various domains [Mnih et al., 2015; OpenAI, 2018;
Silver et al., 2017]. Unfortunately, there is no previous work
on employing function approximation to address the scalabil-
ity limitation in the DCOP literature.

In this paper, we aim to develop the first scalable and
efficient neural-based sampling algorithm for DCOPs. We
make the following key contributions: (1) We first introduce
a new context-based sampling algorithm for DCOPs built
upon regret-matching. Different from existing regret-based
local search algorithms, our methods perform sampling on
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a pseudo tree and store regret values for each context sep-
arately, which allows an agent to devise different strategies
for different contexts. Besides, compared to the existing
sampling-based techniques, our method has a higher sample
efficiency since it accumulates regret values according to the
local problem rather than the subproblem of a variable. (2)
We present a neural-based scheme to improve the scalability
of the proposed sampling algorithm by using deep neural net-
works to approximate the regret values. To the best of our
knowledge, we are the first to leverage deep neural networks
into solving DCOPs. To incentivize exploration, we propose
a regret rounding scheme that rounds small regret values to
positive numbers. (3) We prove the regret bounds of our algo-
rithms. (4) Extensive empirical evaluations indicate that our
neural-based scheme can scale up to large-scale DCOPs and
significantly outperform the state-of-the-art methods. Techni-
cal proofs, pseudo codes and additional results are provided
in the appendix, which can be found at https://personal.ntu.e
du.sg/boan/papers/IJCAI21 Deep DCOP Appendix.pdf.

2 Backgrounds
In this section, we briefly introduce DCOP, pseudo tree and
regret-matching.

2.1 Distributed Constraint Optimization Problems
A distributed constraint optimization problem (DCOP) [Modi
et al., 2005] can be defined by a tuple 〈I,X,D, F 〉 where
I = {1, . . . , n} is the set of agents, X = {x1, . . . , xm} is
the set of variables, D = {D1, . . . , Dm} is the set of discrete
domains and F = {f1, . . . , fq} is the set of constraint func-
tions. Each variable xi takes a value from domain Di and
each function fi : Di1 × . . . ,×Dik → R≥0 defines the cost
for each possible combination of xi1 , . . . , xik . Finally, the
objective is to find a joint assignment X∗ that minimizes the
total cost. That is,

X∗ = arg minX
∑

fi∈F
fi. (1)

For the sake of simplicity, we follow the common assump-
tions that each agent only controls a variable (i.e.,m = n) and
all constraints are binary (i.e., fij : Di ×Dj → R≥0, ∀fij ∈
F ). Therefore, the term “agent” and “variable” can be used
interchangeably and a DCOP can be visualized by a con-
straint graph. Fig.1(a) presents a constraint graph of a DCOP
instance in which vertices and edges represent the variables
and constraints of the DCOP, respectively.

2.2 Pseudo Tree
A pseudo tree [Freuder and Quinn, 1985] defines a partial or-
dering among variables, which is used to organize the search
space or establish a communication structure. A pseudo tree
can be generated by a depth-first traversal to the constraint
graph which classifies the edges into tree edges and pseudo
edges. Consequently, the neighbors of a variable xi are clas-
sified into parent P (xi) (the direct ancestor which connects
to xi via a tree edge), pseudo parents PP (xi) (the direct
ancestors which connect to xi via pseudo edges), children
C(xi) (the direct descendants which connect to xi via tree
edges), and pseudo children PC(xi) (the direct descendants

(a) The constraint graph (b) A possible pseudo tree

(c) Constraint functions

Figure 1: The constraint graph and a derived pseudo tree of a DCOP.

which connect to xi via pseudo edges). For succinctness,
we also use AP (xi) = {P (xi)} ∪ PP (xi) and AC(xi) =
C(xi) ∪ PC(xi) to denote all direct ancestors and descen-
dants of xi, respectively. Finally, the separators Sep(xi) of
xi are the set of ancestors which connect to xi or its descen-
dants.

Fig.1(b) presents a possible pseudo tree corresponding to
the constraint graph in Fig.1(a). The solid edges and the
dotted edge are the tree edges and the pseudo edge, respec-
tively. In the pseudo tree, x2’ neighbors N2 = {x1, x3} are
classified into P (x2) = x1, PP (x2) = ∅, C(x2) = {x3}
and PC(x2) = ∅. Accordingly, AP (x2) = {x1} and
AC(x2) = {x3}. Since x1 is constrained with x2 and x3,
we have Sep(x2) = {x1}.

2.3 Regret-matching
Consider a scenario in which an agent chooses a mixed strat-
egy πt ∈ ∆|A|

1 and observes a reward vector f t ∈ R|A|
in each round t, where A is the set of actions. Then the
instantaneous regret of action a ∈ A is rt(a) = f t(a) −∑
a′ π

t(a′)f t(a′) and the accumulated regret is Rt(a) =∑t
t′=1 r

t′(a). To improve the total reward, the agent needs to
minimize the accumulated regret. Regret-matching [Hart and
Mas-Colell, 2000] is an efficient algorithm for regret mini-
mization, which computes a mixed strategy according to the
positive part of accumulated regret. That is,

πt+1(a) =

{
Rt,+(a)∑

a′∈A R
t,+(a′)

∑
a′∈AR

t,+(a′) > 0
1
|A| otherwise

, ∀a ∈ A, (2)

where Rt,+(a) = max(0, Rt(a)) is the positive part of
Rt(a). Regret-matching has the regret bound of L

√
T |A|,

where L is the largest gap in reward vectors. Because the
accumulated regret grows sublinearly w.r.t. the number of
rounds, regret-matching is a so-called no-regret algorithm
[Blackwell, 1956].

3 Context-based Regret-matching for DCOPs
In this section, we present context-based regret-matching
schemes for DCOPs. We begin with formally introducing our

1∆|A| is the set of probability distributions over set A
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proposed sampling algorithm in Sect. 3.1. Then we show that
the vanilla regret-matching could perform poorly and present
the regret rounding scheme in Sect. 3.2.

3.1 Context-based Regret-matching Scheme
The proposed context-based regret-matching scheme alterna-
tively executes a sampling phase and a backtracking phase
on a pseudo tree. Starting from the root agent, each agent
in sampling phase sequentially selects an assignment accord-
ing to the regret vector associated with the received context,
while backtracking phase is a bottom-up procedure to refine
the solution and update regret values for each agent.

Let us begin with introducing notations that will be used in
the algorithm. For a variable xi in a pseudo tree, we denote
an assignment to the variables in Sep(xi) (i.e., a context) as
Xi and an assignment to the variables in AC(xi) as Yi, re-
spectively. In each round t, after collecting Xt

i and Y ti , the
hindsight local cost Sti (di) of each assignment di ∈ Di is
then computed by
Sti (di) =

∑
xj∈AP (xi)

fij(di, X
t
i (xj)) +

∑
xk∈AC(xi)

fik(di, Y
t
i (xk)), (3)

where Xt
i (xj) denotes the assignment of xj in Xt

i and
Y ti (xk) denotes the assignment of xk in Y ti , respectively.
Given the mixed strategy πti of xi, the expected local cost
sti =

∑
di∈Di

πti(di)S
t
i (di). Finally, the accumulated regret

of xi in round t is defined as

Rti(Xi, di) =

{
Rt−1i (Xi, di) + sti − Sti (di) Xi = Xt

i

Rt−1i (Xi, di) otherwise
. (4)

In each round t, the sampling phase is initiated by the root
agent. After receiving the context Xt

i from its parent, a non-
leaf variable xi first computes the mixed strategy πti by

πti(di) =


Rt−1,+

i (Xt
i ,di)∑

d′∈Di
Rt−1,+

i (Xt
i ,d
′)

∑
d′∈Di

Rt−1,+i (Xt
i , d
′) > 0

1
|Di| otherwise

, ∀di ∈ Di. (5)

Then it samples an assignment dti ∼ πti and sends the aug-
mented context Xt

i ∪ {xi = dti} to its children C(xi). Leaf
variables, however, do not have any subproblem and thus di-
rectly select the assignment that minimizes their local cost.
The phase ends when all leaf agents finish sampling.

The backtracking phase is a bottom-up procedure initiated
by leaf agents sending the selected assignment to their direct
ancestors. After collecting all the assignments of its direct
descendants Y ti , a variable xi computes the hindsight local
cost vector Sti and updates the regret Rti according to Eq.(3)
and Eq.(4), respectively. Finally, xi refines the solution by
changing its assignment to the one with the lowest hindsight
local cost and sends the assignment to its direct ancestors.
The procedure ends after the root agent updates its regret and
then the next round of sampling starts.

To look deeper into how context-based sampling avoids
poor local convergence, consider the instance shown in Fig.1.
In the first round of sampling, all non-leaf agents have no
prior knowledge and sample randomly. Assume that x1 as-
signs F, x2 assigns T and thus leaf agent x3 plays the best
response F. If it does not differentiate contexts, x2 would up-
date its regret values by{
S1
2 = [18, 16]

s12 = 18× 0.5 + 16× 0.5 = 17

{
R1

2(T) = 17− 18 = −1

R1
2(F) = 17− 16 = 1

which means that x2 cannot assign T in the next round. In
fact, one can easily verify that no matter what value x1 as-
signs, if x2 assigns F and x3 plays the best response, then the
instantaneous regret for T is always negative and x2 cannot
deviate to T, which precludes the possibility of reaching the
optimal solution {T, T, T} in subsequent rounds.

The reason behind such mis-coordination is that in context-
free method each agent fails to adapt the complex behavior
of its lower priority neighbors since it uses the same regret
values to make decision for different contexts. In the above
example, given the fact that x1 assigns F and x3 plays the
best response, x2 would conclude that assigning F is better
than assigning T, which is not true if x1 switches to T. In con-
trast, our context-based sampling scheme explicitly maintains
regret values for each context, which allows agents to adapt
the multi-modal behavior of its descendants. In more detail,
x2 in our method would associate the fact “F is superior over
T” with context {x1 =F}, which does not bias the decision-
making procedure under the context {x1=T}.

Since it contains all assignments of separators, the size of
a context message is proportional to the number of agents,
i.e., O(|I|). Note that in sampling phase, each non-leaf agent
sends a context message to each of its children via tree edges.
Therefore, there are |I| − 1 context messages in the sampling
phase, and the total information exchanged is in O(|I|2).
Backtracking phase, on the other hand, exchanges the assign-
ments among neighbors, which induces |F | messages of size
O(1). Therefore, the total size of messages exchanged in each
round is in O(|I|2 + |F |) = O(|I|2).

3.2 Regret Rounding Scheme
Regret-matching could perform poorly in the context of solv-
ing DCOPs due to insufficient exploration. Consider the sim-
ple instance in Fig.2. Assume that x1 selects d11 =T and x2
selects d12 =R in the first round of sampling. The following
equations show the trace when x1 updates its regret.{
S1
1 = [1, 3]

s11 = 1× 0.5 + 3× 0.5 = 2

{
R1

1(∅,T) = 2− 1 = 1

R1
1(∅, F) = 2− 3 = −1

According to Eq.(5) the assignment F cannot be selected by
x1 in the subsequent rounds since its regret is negative, even
though {x1 = F, x2 = L} is the optimal solution. In other
words, negative regret would limit the exploration of the al-
gorithm. Although regret-matching+ [Tammelin et al., 2015]
mitigates the issue by resetting the negative regret to zero, se-
lecting these assignments still depends on the positive instan-
taneous regret in subsequent rounds, which is highly coupled
with the behavior of other agents.

We trigger the effective exploration by rounding small re-
gret values to positive numbers. This way, all assignments
have a non-zero probability in the mixed strategy and the ex-
ploration is independent of other agents’ behavior. Specifi-
cally, instead of maintaining regret Rti for each variable xi,
we maintain the rounded regret R̄ti:

R̄ti(Xi, di) =

{
max

(
δt, R̄

t−1
i (Xi, di) + sti − Sti (di)

)
Xi = Xt

i

R̄t−1i (Xi, di) otherwise
, (6)

where R̄0
i (·, ·) = 0 and δt > 0 is a non-decreasing term.

In this example, if set δt = tα, α > 0, then R̄1
1(∅,T) =
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(a) The pseudo tree (b) The constraint function

Figure 2: A DCOP instance with structured constraint functions

R̄1
1(∅, F) = 1 and thus x1 still has chance to select assignment

F in subsequent rounds, regardless of the strategy selected by
x2. Theorem 1 gives an upper bound of the rounded regret
and Theorem 2 provides the no-regret guarantee.

Theorem 1. For variable xi, let Li =
∑
xj∈Ni

(f+ij −
f−ij ) be the largest gap in its local cost, where f+ij =

maxdi maxdj fij(di, dj) and f−ij = mindi mindj fij(di, dj)
are the upper bound and lower bound of constraint
fij , respectively. After xi finishes T rounds of sam-
pling, the rounded regret R̄Ti (Xi, di) is no higher than√
|Di|

(
TL2

i +
∑T
t=1 δ

2
t

)
for all Xi, di.

Theorem 2. When limt→∞
δt√
t

= 0, the regret rounding
scheme is no-regret, i.e., the total regret grows sublinearly.

4 Scaling Up to Large Problems
In this section, we first address the memory challenge by us-
ing deep neural networks to approximate high-dimensional
regret tables. Then we present a prioritized training scheme
to speed up the proposed algorithm by reducing the number
of non-concurrent training processes in each round.

4.1 Neural-based Sampling Scheme
A prominent issue of the sampling algorithm proposed in
Sect.3 is the high memory consumption incurred by exactly
storing regret values for each context. A straightforward way
would be approximating the regret tables by using linear re-
gression. However, due to their limited capacity, linear mod-
els may not be able to capture the complex patterns when the
problem is large. Alternatively, Regression Regret-Matching
(RRM) [Morrill, 2016; Waugh et al., 2015] tries to address
the issue by using regression trees to estimate the accumu-
lated regret, but it still needs to preserve all regret values dur-
ing the solving process, which eliminates the most attractive
advantage of reducing memory consumption. Also, since a
regression tree cannot be trained incrementally, RRM needs
to re-train the model on all data after updating regret values,
which could be extremely inefficient. As confirmed in our ex-
perimental results, given a very generous runtime limit (e.g.,
1000s), RRM can only finish about 500 rounds of sampling
and ends up with poor solutions.

In contrast, deep neural networks have been demonstrated
to be a powerful function approximator and lead to great suc-
cesses in a wide variety of domains in AI. Therefore, we aim
to address the scalability challenge by parameterizing the re-
gret tables via neural networks. In our neural-based sampling
scheme, for each non-leaf variable xi we maintain an esti-
mator Vi : Πxj∈Sep(xi)∪{xi}Dj → R and a FIFO capacitied

memory Mi to estimate regret and store cached regret, re-
spectively. The input of Vi is the concatenation of the one-hot
encoding of the assignment to Sep(xi) and xi and the output
is the estimated regret.

When receiving a context from its parent, a non-leaf vari-
able xi first retrieves the estimated regret R̂t−1i related to the
context from either memory Mi or estimator Vi, depending
on whether the context-assignment pair 〈Xt

i , di〉 presents in
the memory. Then xi computes the mixed strategy πti accord-
ing to R̂t−1i and perform sampling.

In the backtracking phase, after collecting all the assign-
ments of its direct descendants, xi trains neural network Vi,θi
to minimize the mean squared error (MSE) between the esti-
mated regret and cached regret for h steps. For each step, xi
samples a mini-batch B ⊆ Mi of regret values and updates
the parameters θi to minimize the MSE:

Li(θi) =
1

|B|
∑
〈Xi,di〉∈B

(Mi(Xi, di)− Vi,θi(Xi, di))
2
,

(7)
where |B| is the size of the batch, Mi(Xi, di) and Vi(Xi, di)
are the cached regret value and the estimated regret value
for the context-assignment pair 〈Xt

i , di〉, respectively. Then
xi updates the regret according to Eq.(6). Particularly, a
bootstrapping step is performed if context-assignment pair
〈Xt

i , di〉 does not present in the memory. Theorem 3 presents
the regret bound of the neural-based sampling scheme.

Theorem 3. For variable xi and round
T , the regret RT (Xi, di) is no higher than√
Li|Di|

(
(4
√
|Di|δT + Li)T + 4

∑T
t=1

∑
d′i
εti(Xi, d′)2

)
for all Xi, di, where εti(Xi, d

′
i) = R̂ti(Xi, d

′
i)− R̄ti(Xi, d

′
i).

4.2 Prioritized Training Scheme
One potential issue of the proposed neural-based sampling
scheme could be the high latency incurred by non-concurrent
training processes in the backtracking phase of each round.
More specifically, agents in a chain structure sequentially
train their neural network, which is not desirable when there
are long chains in a pseudo tree. Unfortunately, since a
pseudo tree is generated by depth-first traversal, it usually
has few branches when the problem is large, which makes
the training quite time-consuming.

Therefore, we propose a prioritized training scheme to re-
duce the training latency by selecting several key agents in
each chain structure to perform training procedure in each
round. We confine our training scheme to chain structures
because agents in different branches (1) can perform in par-
allel in real-world scenarios and (2) need additional efforts to
coordinate training process.

In more detail, in preprocessing phase, we first cluster the
agents into different groups according to their position in the
pseudo tree and the similarity of dimensions of their regret
table. That is, starting from an empty group and the first agent
of the chain, we extend the group by adding the current agent
until (1) the agent has more than one child, or (2) there is
an agent whose regret table dimensions differ by b variables
from the union of the ones of remaining agents in the group,

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

149



(a) p1 = 0.25, |Di| = 10 (b) 50 agents, |Di| = 10 (c) 50 agents, p1 = 0.25

Figure 3: Performance comparison on random DCOPs

(a) Scale-free net problems (b) Sensor net problems

Figure 4: Performance comparison on structured problems

where b is a user-specified difference budget to control the
size of each group. Then a new group is created and this
procedure repeats until each agent belongs to a group.

In backtracking phase, we schedule the training processes
of each group G according to the prediction error of each
agent. That is, each agent i maintains a discounted error eti.
Each time agent i backtracks, it performs training with the
probability eti/

∑
j∈G e

t
j . The discounted error is updated by

the absolute error between the predicted regret and the cached
regret under current context with discount factor γ. That is,

eti = γet−1i + (1−γ)
∑

di∈Di

|Mi(X
t
i , di)−Vi,θi(Xt

i , di)|.

5 Empirical Evaluations
We empirically evaluate our proposed neural-based sampling
scheme (Neural-RRS) on standard benchmark problems in-
cluding random DCOPs, scale-free network problems and
sensor network problems. We set δt = t0.45 and consider
each estimator as a neural network with two hidden layers.
Each hidden layer has 16 neurons and uses relu as the ac-
tivation function. Each time the neural networks are trained
by 2 steps of mini-batch stochastic gradient descent (SGD)
with a batch size of 32. We use Adam optimizer [Kingma
and Ba, 2014] with a learning rate of 2× 10−3 to update pa-
rameters. Finally, we set difference budget b = 4, γ = 0.9
and the capacity of the memory to 5000 regret values.

The baselines we consider include DSA-C [Zhang et al.,
2005], GDBA [Okamoto et al., 2016] as representative lo-

cal search algorithms, MGM-2 [Maheswaran et al., 2004]
as a representative k-OPT algorithm, D-Gibbs [Nguyen et
al., 2019] as a representative sampling algorithm and Max-
sum ADVP [Zivan et al., 2017] as a representative belief
propagation algorithm. Besides, we also include regret-based
local search schemes [Chapman et al., 2011] (LSRM and
WRM-I) since they are context-free regret-matching algo-
rithms for DCOPs. Finally, we also consider the variants LR-
RRS and RT-RRS that use linear regression and regression
tree to approximate the regret values, respectively.

We set p = 0.8 for DSA-C and use 〈M,NM,T 〉 vari-
ant for GDBA according to [Okamoto et al., 2016]. Finally,
all algorithms terminate after 5000 rounds with a timeout of
1000s and report the anytime normalized cost (i.e., the best
solution cost divided by the number of constraints) as the re-
sult. All experiments are conducted on an i7 octa-core work-
station with 32 GB memory. For each experiment, we average
the results over 50 random instances.
Results on random DCOPs. In a random DCOP, two agents
randomly establish a constraint with a probability p1, result-
ing a constraint graph with density p1. For each constraint,
we uniformly randomly select costs from [0, 100]. We vary
the number of agents, density and domain size respectively
and present the results in Fig.3. Regret-based local search
algorithms explore low-quality convergences and are infe-
rior to DSA. Similarly, D-Gibbs converges to local optima
quickly and performs just like stochastic search. On the
other hand, the merits of our proposed context-based regret-
matching scheme are confirmed by the fact LR-RRS and
Neural-RRS significantly outperform their context-free coun-
terparts as well as MGM2 and GDBA. RT-RRS, however,
fails to strictly dominate GDBA when solving the problems
with large domain size. That is because regression tree can-
not be trained incrementally. As a consequence, each agent
in RT-RRS has to fit its model on all cached regret values,
which is extremely inefficient and does not scale up well. In
fact, RT-RRS can only finish about 500 rounds of sampling
and ends up with poor solutions.
Results on scale-free network problems. In the experiment,
we use Barabási-Albert model [Barabási and Albert, 1999]
to generate scale-free networks. We consider the problems
with m0 = 10 initially connected vertices (i.e., variables). In
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(a) p1 = 0.25, |Di| = 10 (b) 50 agents, |Di| = 10 (c) 50 agents, p1 = 0.25

Figure 5: Runtime results on random DCOPs

(a) Scale-free net problems (b) Sensor net problems

Figure 6: Runtime results on structured problems

each iteration, a new vertex is connected to m1 vertices with
a probability that is proportional to the degree of each exist-
ing vertex. We set the number of vertices to 50 and uniformly
select costs from [0,100]. Fig.4(a) presents the results when
varying m1. D-Gibbs performs poorly due to the inability of
exploiting different contexts and gets trapped in local optima
quickly. GDBA and MGM2 perform better by using gener-
alized breakout mechanism and coordinated moves between
two agents to escape poor convergence, respectively. On the
other hand, our Neural-RRS finds significantly better solu-
tions than all the competitors on different m1. In fact, the av-
erage improvement of Neural-RRS over GDBA is 5.6%. That
is due to the fact that our algorithm stores regret for each con-
text, which finds significantly better solutions by allowing an
agent to devise different strategies for different contexts.
Results on sensor network problems. In a sensor network
problem [Nguyen et al., 2012; Nguyen et al., 2019], sensors
are placed in a 2D grid and each sensor can move along its
four cardinal directions or stay stationary (i.e., each sensor
has 5 possible actions). Besides, sensors are constrained with
their neighboring sensors and the costs are uniformly selected
from [0,100]. We vary the grid size from 6× 6 (i.e., 36 vari-
ables) to 10×10 (i.e., 100 variables) and present the results in
Fig.4(b). Interestingly, Max-sum ADVP is quite competitive
and finds the solutions with quality much better than the ones
found by GDBA and MGM2 in this set of experiments. This
might be due to the high-structured topology of sensor net-
works. Besides, it is worth noting that the performance of LR-

Figure 7: Convergence analysis on random DCOPs

RRS is similar to Neural-RRS when solving small problems
(i.e., the ones with grid size of 6 × 6), but the performance
substantially degenerates w.r.t. growing grid size. That might
be due to the fact that the limited representational capability
of linear models cannot capture the complex patterns in large
problems. In contrast, Neural-RRS leverages powerful deep
neural networks to represent regret tables, leading to the best
performance on all configurations.
Runtime results. We compare the wall clock runtime of
each algorithm and present the results when solving random
problems and structured problems in Fig.5 and Fig.6, respec-
tively. It can be seen that all traditional methods terminate
very quickly. That is no surprise since they essentially per-
form table lookup, leading to lower overall runtime. In con-
trast, all functional versions of RRS require higher runtime
as they need additional efforts to train estimators. In partic-
ular, RT-RRS is timed out on all test cases, and the runtime
of LR-RRS grows significantly w.r.t. the growing problem
scales. In contrast, combining with the prioritized training
scheme, our Neural-RRS incurs relatively modest runtime re-
quirement than LR-RRS. Notably, on the random problems
with different density (i.e., Fig.5(b)) and the scale-free prob-
lems (i.e., Fig.6(a)), our Neural-RRS requires significantly
less runtime than other RT-RRS and LR-RRS, which demon-
strates the merits of prioritized training scheme.

To investigate the efficiency of our algorithms, we conduct
a convergence analysis on random DCOPs with 50 agents,
density of 0.25 and domain size of 15, and present the results
in Fig.7. RT-RRS improves slowly and fails to outperform
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(a) p1 = 0.25, |Di| = 10 (b) 40 variables, |Di| = 10 (c) 40 variables, p1 = 0.25

Figure 8: Ablation study on random DCOPs

GDBA in the first 500s, while LR-RRS marginally surpasses
GDBA after 350s. Finally, combining with the prioritized
training scheme, our Neural-RRS improves relatively fast and
steadily, dominating GDBA after 150s.
Ablation study. To explicitly demonstrate the necessity of
regret rounding scheme and function approximation, we con-
sider the tabular counterpart of Neural RM-RRS (namely
RM-RRS) and the one uses vanilla regret-matching (namely
RM). We set the memory capacity to 5000 for Neural RM-
RRS and vary the memory capacity from 5000 to 40000 for
tabular counterparts to simulate different memory budgets in
real-world scenarios. Fig. 8 presents the results on random
DCOPs. Here we omit the results of RM under different
memory capacities due to their similarity.

It can be clearly seen that RM is inferior to RM-RRS under
the same memory capacity. In fact, given smaller memory
capacity (e.g., 10000), RM-RRS can still outperform RM in
the most cases. That is because the negative regret values
in RM would restrict exploration and eventually lead to poor
results. In contrast, RM-RRS triggers effective exploration by
actively rounding the negative regret to small positive values,
ensuring that all assignments have a non-zero probability.

On the other side, exploration triggered by rounded regret
could also lead to a large number of different contexts. There-
fore, given limited budget (e.g., 5000), RM-RRS quickly runs
out of memory before finding a good solution, leading to poor
performance when solving large-scale problems, while Neu-
ral RM-RRS with the same memory constraint still achieves
the best performance. Therefore, the scalability of RM-RRS
is severely restricted by its tabular nature, which is success-
fully addressed by neural function approximation.

6 Conclusion
Most of incomplete algorithms for DCOPs are context-free,
which usually leads to low-quality convergence. While
context-based methods tries to remedy the problem by explic-
itly storing information for each context, they usually suffer
from low sample efficiency and high memory consumption
which prohibit them from scaling up to large problems. In
this paper, we tackle the issues by proposing Neural-RRS, the
first neural context-based algorithm for DCOPs, built upon

regret-matching. The algorithm overcomes the pathology of
low sample efficiency by accumulating regret according to
the local problem of each variable. To address the scala-
bility challenge incurred by exactly storing regret for each
context, Neural-RRS approximates the regret tables by deep
neural networks. Besides, we propose a prioritized training
scheme to reduce the training latency. Finally, the algorithm
uses a regret rounding scheme that rounds small regret values
to positive numbers to ensure exploration. We theoretically
show the regret bound and the extensive evaluations indicate
that our algorithm can scale up to large problems and signifi-
cantly outperform the state-of-the-art methods.
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