
Completeness Matters: Towards Efficient Caching
in Tree-Based Synchronous Backtracking Search
for DCOPs
Jie Wang1 #

College of Computer Science, Chongqing University, China

Dingding Chen2 #

College of Computer Science, Chongqing University, China

Ziyu Chen3 #

College of Computer Science, Chongqing University, China

Xiangshuang Liu #

College of Computer Science, Chongqing University, China

Junsong Gao #

College of Computer Science, Chongqing University, China

Abstract
Tree-based backtracking search is an important technique to solve Distributed Constraint optimization
Problems (DCOPs), where agents cooperatively exhaust the search space by branching on each
variable to divide subproblems and reporting the results to their parent after solving each subproblem.
Therefore, effectively reusing the historical search results can avoid unnecessary resolutions and
substantially reduce the overall overhead. However, the existing caching schemes for asynchronous
algorithms cannot be applied directly to synchronous ones, in the sense that child agent reports the
lower and upper bound rather than the precise cost of exploration. In addition, the existing caching
scheme for synchronous algorithms has the shortcomings of incompleteness and low cache utilization.
Therefore, we propose a new caching scheme for tree-based synchronous backtracking search, named
Retention Scheme (RS). It utilizes the upper bounds of subproblems which avoid the reuse of
suboptimal solutions to ensure the completeness, and deploys a fine-grained cache information unit
targeted at each child agent to improve the cache-hit rate. Furthermore, we introduce two new
cache replacement schemes to further improve performance when the memory is limited. Finally, we
theoretically prove the completeness of our method and empirically show its superiority.

2012 ACM Subject Classification Computing methodologies → Cooperation and coordination

Keywords and phrases DCOP, Cache, Any-space Algorithms, Complete Search Algorithms

Digital Object Identifier 10.4230/LIPIcs.CP.2022.39

Supplementary Material Software (Source Code): https://github.com/czy920/RS

1 Introduction

Distributed Constraint Optimization Problems (DCOPs) [15, 11] are a popular framework
for multi-agent systems (MAS) where agents need to cooperate with each other to optimize a
global objective. Owing to their excellent modeling ability, DCOPs have been widely applied
in many real-world problems such as sensor network [9], task scheduling [18, 27], smart
grid [12] and so on.

1 Equal contribution.
2 Equal contribution.
3 Corresponding author.

© Jie Wang, Dingding Chen, Ziyu Chen, Xiangshuang Liu, and Junsong Gao;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 39; pp. 39:1–39:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jiewang1@cqu.edu.cn
mailto:dingding@cqu.edu.cn
mailto:chenziyu@cqu.edu.cn
mailto:shxliu21@163.com
mailto:jsgao0126@cqu.edu.cn
https://doi.org/10.4230/LIPIcs.CP.2022.39
https://github.com/czy920/RS
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Towards Efficient Caching for DCOPs

Incomplete algorithms for DCOPs [31, 17, 10, 23, 22] aim to rapidly find an acceptable
solution at the expense of sacrificing optimality, while complete algorithms ensure the op-
timal solution and can be generally divided into inference-based and search-based algorithms.
DPOP [24] and Action_GDL [28] are typical inference-based complete algorithms which
employ dynamic programming to solve DCOPs. However, they require a linear number of
messages of exponential size which bring an excessive network load. Whereupon, ODPOP [25],
MB-DPOP [26] and RMB-DPOP [6] were proposed to trade the number of messages for
smaller memory consumption by propagating the dimension-limited utilities with the corres-
ponding contexts iteratively. Besides, DPOP with function filtering [2] proposed to exploit
utility bounds to reduce the size of messages.

Search-based complete algorithms perform distributed backtracking search to exhaust the
search space and have a linear size of messages. Among them, tree-based complete search
algorithms have attracted wider attention due to their high concurrency and can further
be classified into synchronous and asynchronous. Given a context, tree-based complete
synchronous search algorithms like NCBB [3], PT-FB [16] and HS-CAI [5] require each agent
to report its search result after it has thoroughly explored its subproblem, while asynchronous
ones like ADOPT [20] and BnB-ADOPT [29] allow each agent to report its search results
solely based on its local view of its subproblem. To accelerate the search process, these
algorithms utilize the upper and lower bounds to prune the search space. Accordingly,
many pruning techniques like soft arc consistency [14], forward bounding procedure [16] and
inference-based estimation [8, 1, 5] have arisen to tighten the lower bounds. On the other
side, tree-based backtracking search requires agents to report their search results regarding
their subproblems given a context. When receiving the same context, agents can effectively
reuse the historical search results to avoid unnecessary resolutions and substantially reduce
the overall overhead. Accordingly, any-space algorithms using historical exploration results
to speed up the search process have been proposed. Matsui et al [19] proposed a caching
scheme for ADOPT, named any-space ADOPT, where each agent caches the upper and lower
bounds of its subproblem given a context. Yeoh et al [30] further improved the scheme by
introducing three cache replacement schemes to boost the cache utilization. However, these
caching schemes for asynchronous algorithms are not suitable for synchronous algorithms
since synchronous algorithms need to report the optimal cost for each subproblem rather
than the bounds. Although tree-based complete synchronous search algorithms have been
widely studied, there are few studies on cache schemes for them. Any-space NCBB [4], the
only caching scheme for synchronous algorithms now, presented a caching scheme for NCBB
where a caching unit is introduced to store the search result regarding a given context for
each agent. Unfortunately, the scheme fails to consider the impact of pruning on cached
results and leads to the incompleteness. And also, the scheme matches by comparing all the
separators of local agent, which brings the low cache-hit rate. Therefore, the cache scheme
in any-space NCBB cannot be applied to existing tree-based complete synchronous search
algorithms. To this end, we present a complete and effective caching scheme for tree-based
complete synchronous search algorithms and our main contributions are listed as follows:

We systematically analyze the cause for the incompleteness of the existing synchronous
caching scheme, and provide a solution which compares the historical upper bound with
the current upper bound to determine whether the historical results can be reused.

To improve the cache-hit rate, we introduce a fine-grained cache information unit targeted
at each child agent which allows each agent to independently reuse the historical results of
subproblem rooted at its child. Along with the solution to the incompleteness, we propose
our Retention Scheme (RS) accordingly, which is suitable for all tree-based complete
synchronous search algorithms.

J. Wang, D. Chen, Z. Chen, X. Liu, and J. Gao 39:3

In addition, to improve the performance of our RS when the memory is limited, we
propose two heuristic cache replacement schemes which consider the characteristics of
the cached information units and synchronous algorithms, respectively.
We theoretically show the completeness of RS, and the experimental results demonstrate
it improves state-of-the-art tree-based complete synchronous search algorithms on all the
metrics in most cases.

2 Background

In this section, we first introduce the preliminaries including DCOPs, pseudo tree, tree-based
complete synchronous search algorithms and the caching scheme in any-space NCBB.

2.1 Distributed Constraint optimization Problems

A distributed constraint optimization problem [20] can be defined by a tuple ⟨A, X, D, F ⟩
where

A = {a1, a2, · · · , an} is a set of agents.
X = {x1, x2, · · · , xm} is a set of variables.
D = {D1, D2, · · · , Dm} is a set of finite variable domains, each variable xi taking a value
in Di.
F = {f1, f2, · · · , fq} is a set of constraints, each of which fi : Di1 ×Di2 × · · ·Dik

→ R⩾0
denotes the non-negative cost for each assignment combination of xi1 , xi2 , · · ·xik

.

a1

a4a2

a3 a5

a6

(a) Constraint graph. (b) Constraint matrix. (c) Pseudo tree.

Figure 1 An example of a DCOP and its pseudo tree.

For the sake of simplicity, the paper assumes that each agent holds exactly one variable
(i.e., n = m) and all constraints are binary relations (i.e., fij : Di ×Dj → R⩾0). Thus, the
term “agent” and “variable” could be used interchangeably. Without loss of generality, a
DCOP seeks an assignment to all the variables that minimizes the total cost. Formally,

X∗ = arg min
di∈Di,dj∈Dj

∑
fij∈F

fij (xi = di, xj = dj)

In general, a DCOP can be visualized by a constraint graph where vertexes represent the
agents and edges represent the constraints, respectively. Fig.1(a) presents a DCOP with six
variables and eight constraints. For simplicity, the domain size of each variable is two and all
constraints are identical as shown in Fig.1(b) where i < j.

CP 2022

39:4 Towards Efficient Caching for DCOPs

2.2 Pseudo Tree
A pseudo tree [13, 7] is a partial ordering among agents, which can be generated by depth-first
search (DFS) traversal to a constraint graph. It has the property that different branches are
independent, and categorizes its constraints into tree edges and pseudo edges (i.e., non-tree
edges). Fig.1(c) presents a possible pseudo tree deriving from Fig.1(a) where tree edges
and pseudo edges are denoted by solid and dashed lines, respectively. For an agent ai,
its neighbors can be categorized into its parent P (ai), children C(ai) and pseudo parents
PP (ai), according to their positions in the pseudo tree and the type of edges they connect
through. Each agent directs its message passing and traverses the solution space through
such a (pseudo) parent-child relationship. More precisely, they can be formally defined as
follows:

P (ai) is the ancestor connecting with ai through a tree edge (e.g., P (a4) = a3 in Fig.1(c)).
C(ai) is the set of descendants connecting with ai through tree edges (e.g., C(a4) =
{a5, a6} in Fig.1(c)).
PP (ai) contains the ancestors that connect with ai through pseudo edges (e.g., PP (a5) =
{a3} in Fig.1(c)).

For succinctness, we also adopt the following notations.
AP (ai) is the set of all (pseudo) parents of ai. i.e., AP (ai) = PP (ai) ∪ {P (ai)} (e.g.,
AP (a5) = {a3, a4} in Fig.1(c)).
Anc(ai) is the set of ancestors of ai (e.g., Anc(a4) = {a1, a2, a3} in Fig.1(c)).
Desc(ai) is the set of descendants of ai (e.g., Desc(a3) = {a4, a5, a6} in Fig.1(c)).
Sep(ai) [11] is the separator set of ai, comprising the ancestors that are constrained with
agents in {ai} ∪Desc(ai) (e.g., Sep(a4) = {a1, a3} in Fig.1(c)), i.e.,

Sep (ai) = {aj ∈ Anc (ai) |∃ak ∈ {ai} ∪Desc (ai) , s.t., aj ∈ AP (ak)}

2.3 Tree-based Complete Synchronous Search Algorithms
Tree-based complete synchronous search algorithms perform a branch-and-bound search on a
pseudo tree to exhaust the search space. Specifically, each agent in the algorithms obtains the
optimal cost of subproblem rooted at itself under the current partial assignment, and prunes
to avoid unnecessary exploration by exploiting the bounds including the lower and upper
bounds of its subproblem. In fact, most of the existing synchronous algorithms (e.g., NCBB,
PT-FB and HS-CAI etc.) can be regarded as variants of SBB [15] on a pseudo tree, which
utilize different techniques to obtain a tighter lower bound to improve pruning. Algorithm
1 presents the sketch of the implementation of SBB on a pseudo tree (named TreeBB) to
describe the general framework of tree-based complete synchronous search algorithms.

In TreeBB, each agent ai needs to maintain the following data structures.
Cpai refers to the current partial assignment which contains all the assignments to
Anc(ai).
ubi is the upper bound of its subproblem under Cpai.
optc

i (di) is the optimal cost of its child ac ∈ C(ai) for di ∈ Di, which is set to infinite if
Cpai ∪ {xi, di} is infeasible under ubi.
sendubc (di) is the upper bound sent to its child ac for di ∈ Di, i.e.,

sendubc (di) = ubi −
∑

aj∈AP (ai)

fij(di, Cpai(aj))−
∑

aj∈C(ai)∧optj
i
̸=null

optj
i (di) (1)

J. Wang, D. Chen, Z. Chen, X. Liu, and J. Gao 39:5

Algorithm 1 TreeBB for ai.

When Initialization ():
1 if ai is the root agent then
2 InitializeVariables()
3 di ← the first element in D̃c

i , Cpai ← {(xi, di)}
4 send CPA(Cpai,∞) to ∀ac ∈ C(ai)

When received CPA (Cpai, ubi) from P (ai):
5 store {Cpai, ubi}
6 if ai is a leaf agent then
7 SendBacktrack ()
8 else
9 InitializeVariables()

10 ExploreValue (ac),∀ac ∈ C(ai)
When received BACKTRACK (opt∗) from ac ∈ C(ai):

11 di ← SrchV alc
i , D̃c

i ← D̃c
i \{di} ,optc

i (di)← opt∗

12 if ai has received all BACKTRACK messages from C(ai) for di then
13 ubi ← min(ubi, lbi(di))
14 ExploreValue (ac)

Function InitializeVariables ():
15 D̃c

i ← Di, ∀ac ∈ C(ai)
16 optc

i (di)← null, ∀ac ∈ C(ai), di ∈ Di

Function ExploreValue (ac):
17 di ← NextFeasibleAssignment (ac)
18 if D̃c

i = ∅,∀ac ∈ C(ai) then
19 if ai is the root agent then
20 Algorithm terminates.
21 else
22 SendBacktrack ()
23 else
24 SrchV alc

i ← di, Cpac ← Cpai ∪ {(xi, di)}
25 send CPA(Cpac, sendubc(di)) to ac

Function NextFeasibleAssignment (ac):
26 di ← the first element in D̃c

i

27 while di ̸= null ∧ lbi (di) ⩾ ubi do
28 D̃c

i ← D̃c
i \{di}, optc

i (di)←∞, di ← the first element in D̃c
i

29 return di

Function SendBacktrack ():
30 opt∗ ← mindi∈Di

lbi (di)
31 Send BACKTRACK(opt∗) to P (ai)

lbi(di) is its lower bound for di ∈ Di, i.e.,
lbi(di) =

∑
aj∈AP (ai)

fij(di, Cpai(aj)) +
∑

ac∈C(ai)∧optc
i
̸=null

optc
i (di) (2)

opt∗ is the current optimal cost of its subproblem under Cpai, i.e.,
opt∗ = min

di∈Di

lbi (di) (3)

TreeBB begins with the root agent sending the first value in its domain to its children
(line 1-4). When an agent ai receives a CPA message from its parent, it first stores the partial
assignment Cpai and the upper bound ubi (line 5), then initializes the search domain D̃c

i and
optc

i (line 9,15-16). Next, ai finds the first feasible assignment, i.e., the first assignment di

such that lbi(di) < ubi (line 26-29) and explores the corresponding subproblem (line 10, 17).
If such an assignment exists, ai sends a CPA message together with sendubc(di) calculated
by Eq.(1) to its children (line 23-25). Otherwise, it sends a BACKTRACK message with the
optimal cost opt∗ to its parent (line 18-22, line 30-31).

When ai receives a BACKTRACK message for di from its child ac, it updates the
corresponding optimal cost optc

i (di) with the actual cost opt∗ reported by ac and continues
to explore the subproblem corresponding to its next feasible assignment (line 11, 14). If ai

CP 2022

39:6 Towards Efficient Caching for DCOPs

has received all the BACKTRACK messages for di from its children, it updates the current
upper bound for its subproblem (line 12-13). Finally, TreeBB terminates after the root agent
exhausts its search domain and a global optimal cost will be got (line 18-20).

2.4 Caching Scheme in Any-space NCBB
To better utilize the historical search results, any-space NCBB proposed that agent ai caches
the historical cost and the corresponding assignments of Sep(ai), called contexti. To this
end, any-space NCBB constructs a caching information unit I, a map set ⟨contexti, result⟩,
to store these historical costs and contexts for future use. Here, we refer to such a caching
scheme as OCS. Taking Fig.1(c) for example, assume that a4 has obtained the current
optimal cost opt∗ of its subproblem. The opt∗ is valid as long as a1 and a3 do not change
their assignments. Accordingly, a4 could directly get the opt∗ for its subproblem from the
cache and backtracks since re-exploring is unnecessary.

We next illustrate how OCS works when applied to TreeBB. There are two modifications
to the original for implementing the scheme. First, before ai sends a BACKTRACK message
(line 22), it stores the current optimal cost opt∗ along with the corresponding contexti into
its cache. Second, before exploring its subproblem (line 10), ai looks up whether the current
context is already in the cache. If it is, ai sets the search domain D̃c

i to null and sends
a BACKTRACK message with the opt∗ in the cache to its parent. Unfortunately, such a
scheme could lead to the incompleteness, which will be illustrated in detail in Subsection 3.1.

3 Proposed Method

In this section, we present a new caching scheme, named Retention Scheme (RS). We begin
with the motivation of our work and then present the details. Finally, we give two cache
replacement schemes.

3.1 Motivation
Actually, in OCS, agent ai caches the optimal cost opt∗ under a given ubi. However, when
pruning happens with ubi, agent ai could carry out an incomplete exploration, and caches
the opt∗ and its contexti. Clearly, such a cost cannot guarantee to be optimal since its
search subspace is not exploited thoroughly yet. Considering a condition where pruning
is not carried out, ai could find a better opt∗ by exploring the search space pruned before.
Unfortunately, such a condition could happen since ubi calculated by Eq.(1) may increase
with the different assignments of Anc(ai). Note that, in the same contexti, the upper bound
for pruning may be different since Sep(ai) is only a subset of Anc(ai). As a result, if OCS
directly uses the opt∗ obtained from a pruned search space from its cache, the completeness
of the algorithm can not be guaranteed.

To illustrate the issue, based on TreeBB, we take Fig.1 as an example. Here, we mainly
focus on agent a4 and compare the difference when OCS is applied. Assume that the upper
bound for x1 = 0 is 20, thus a4 could receive a CPA message containing a current partial
assignment Cpa4 = {(x1, 0), (x2, 0), (x3, 0)} and an upper bound ub4 = 6 as illustrated in
Fig.2(a). Next, since lb4(0) = 7 calculated by Eq.(2) is greater than its ub4 = 6, a4 prunes the
corresponding search space and sets the related cost to infinity, i.e., opt5

4(0) = opt6
4(0) =∞.

Subsequently, a4 chooses its next feasible assignment x4 = 1, and stores the best costs from
its children into opt5

4(1) and opt6
4(1), respectively. Then, the opt∗ is calculated according to

Eq.(3) and caches together with the corresponding context4 as ⟨{(x1, 0), (x3, 0)}, 14⟩, shown in

J. Wang, D. Chen, Z. Chen, X. Liu, and J. Gao 39:7

(a) (b) (c)

Figure 2 An example of OCS-based algorithm to show its incompleteness.

Fig.2(b). Now, if a4 receives a new CPA message containing Cpa4 = {(x1, 0), (x2, 1), (x3, 0)},
in OCS, a4 could directly use the historical result in the cache since the context4 is identical
even in difference Cpa4. However, the better cost for the current Cpa4 is 12 which is depicted
in Fig.2(c), since a4 explores the search space pruned before under the larger ub4 = 15. As a
result, the completeness could be impaired when OCS is applied.

Additionally, in OCS, the cache is accessed only when the current contexti is identical
to the items that has already stored in the information unit I. In the worst cases, the
cache does not work in synchronous algorithms if |Anc(ai)| = |Sep(ai)|, as the traversal for
the combinations of contexti is ordered. As a result, the next contexti is impossible to be
identical to the cached items. However, for each child ac, its corresponding contextc is only
the subset of that of its parent contexti, which means the cached costs may also be valid
under a different contexti for ac. Taking a4 in Fig.2 as an example, the opt5

4(1) = 6 is valid
as long as a3 does not change its assignment, regardless of the assignment of a1. Therefore,
the OCS makes little use of the historical results and leads to a low cache utilization.

3.2 Retention Scheme
In order to solve the issues mentioned above, we propose the Retention Scheme (RS) to
ensure the completeness and improve the cache utilization.

For the first issue, given a contexti we additionally record the current upper bounds
ai received into the information unit I for judging whether the cached item is reliable.
Specifically, if a newly received ubi is greater than the stored one under the same contexti,
the cached opt∗ could be unreliable as pointed out in Subsection 3.1, and re-exploration
should be carried out. Specially, if the current opt∗ is obtained by exhausting the search space
of its children, such opt∗ is sure to be reliable. Here, we denote such opt∗ as the realcost

under its corresponding contexti. Obviously, if ai is the leaf agent, the opt∗ is the realcost.
Besides, if the opt∗ is less than the received ubi, the opt∗ is the realcost, see Lemma 1. Thus,
once the current opt∗ is detected to be the realcost, we set the stored ubi to be ∞ to avoid
unnecessary re-exploration. So far, we have already guaranteed the completeness since only
the realcost can be obtained for use.

Next, we illustrate how we solve the second issue. Here, we adopt a fine-grained cache
strategy by splitting the contexti in OCS into contextc for ∀ac ∈ C(ai), where contextc

only includes the assignments of Sep(ac) for each ac. Eq.(4) gives the relationship between
Sep(ac) and Sep(ai).⋃

ac∈C(ai)

Sep (ac) \ {ai} ⊆ Sep (ai) (4)

CP 2022

39:8 Towards Efficient Caching for DCOPs

So, different from OCS, we propose to use I to only store the information map related
to its children, i.e., ⟨contextc, ⟨optc, subc⟩⟩, where optc and subc is the best cost reported by
its child ac and the corresponding upper bound for each child under the current contextc,
respectively.

Algorithm 2 Retention Scheme for ai.
When Initialization:

1 allocate memory space k for each child by Eq.(5)
Function InitVariable ():

2 foreach ac ∈ C(ai) do
3 foreach di ∈ Di do
4 contextc ← Cpai(Sep(ac)) ∪ {(xi, di)}
5 if IUCachec

i (contextc) ̸= null then
6 {optc

i (di), subc
i (di)} ← IUCachec

i (contextc)
7 else
8 optc

i (di)← null,subc
i (di)← 0

9 D̃c
i ← {di|di ∈ Di, subc

i (di) ̸=∞}
Function NextFeasibleAssignment (ac):

10 di ← the first element in D̃c
i

11 while (di ̸= null ∧ lbi (di) ⩾ ubi) ∨ (di ̸= null ∧ sendubc(di) ⩽ subc
i (di)) do

12 if lbi (di) ⩾ ubi then
13 {optc

i (di), subc
i (di)} ← {∞, 0}

14 D̃c
i ← D̃c

i \{di}
15 di ← the first element in D̃c

i

16 return di

Function Backtrack ():
17 FillIUCache ()
18 opt∗ ← mindi∈Di

lbi (di)
19 if opt∗ is a realcost then
20 send BACKTRACK (opt∗,∞) to P (ai)
21 else
22 send BACKTRACK (opt∗, ubi) to P (ai)

Function FillIUCache ():
23 foreach ac ∈ C(ai) do
24 if IUCachec

i (contextc) ̸= null then
25 foreach di ∈ Di do
26 if subc

i (di) > 0 then
27 IUCachec

i (contextc)← {optc
i (di) , subc

i (di)}
28 else if memc

i > 0 then
29 IUCachec

i (contextc)← {optc
i (di) , subc

i (di)} ,∀di ∈ Di

30 memc
i ← memc

i − |Di|
31 else
32 call certain page replacement procedure

Besides, some modifications should be done to implement the strategy appropriately.
Specifically, each agent ai additionally attaches the upper bound to the BACKTRACK
message to its parent agent and maintains a list subc

i (di),∀di ∈ Di, ac ∈ C(ai) to record
the upper bound sent from ac and update it if needed. Moreover, for each child ac, ai

also maintains some additional data structures, which includes an IUCachec
i to store all

information units and a memc
i to record the remaining memory space.

Next, we will detail how to implement the RS in TreeBB. Algorithm 2 presents the sketch
of RS, and we only describe the difference from TreeBB. Specifically, each agent ai starts by
allocating memory for each child. Here, we set the maximum memory space with a parameter
k for each agent, which means ai can cache |Di|k information units I at most and allocate
the memory for each child ac according to Eq.(5) if ai has more than one child (line 1). The
maximum memory function |Di|k is widely used in some memory-bounded algorithms, and
other functions (e.g., a constant value or ρ ∗ |D||Sep(ai)| where ρ ∈ (0, 1]) can also be adopted.

J. Wang, D. Chen, Z. Chen, X. Liu, and J. Gao 39:9

As can be seen from Eq.(5), agent ai allocates as much memory space as possible for ac with
small |Sep(ac)|, but the initialized memory space memc

i should not exceed the maximum
memory requirement, i.e.,|Di||Sep(ac)|. It is based on an intuitive idea that agent ai with
small |Sep(ac)| has fewer combinations for contextc, which could lead to a higher cache-hit
rate.

memc
i ← min

(∑

ac′ ∈C(ai) |Sep(ac′)|−|Sep(ac)|
)
∗ |Di|k

(|C(ai)| − 1) ∗
∑

ac′ ∈C(ai) |Sep(ac′)| , |Di||Sep(ac)|

 ,∀ac ∈ C(ai) (5)

Next, the execution phase of TreeBB starts. When ai receives a CPA message from its
parent, for each child ac, it judges whether the current contextc is already in the cache
(line 2–4). Specifically, if it hits, ai obtains the corresponding historical results in the
information unit cache IUCachec

i and initializes optc
i and subc

i (line 5–6). Otherwise, ai sets
subc

i (di) to 0 and explores its child ac when sendubc(di) > 0 (line 7–8). Then, when the
obtained subc

i (di) is ∞, which means a realcost for di has already been obtained, then di is
removed from D̃c

i (line 9). After that, when ai selects the next feasible assignment to explore
for child ac, our RS gives an additional pruning judgement (line 11–15). That is, a value di

is removed from the search domain D̃c
i if a new sendubc(di) ⩽ subc

i (di) since ai still cannot
get a better cost under the sendubc(di).

Before ai sends a BACKTRACK message, for each child ac, it stores the current optimal
cost optc

i (di) and upper bound subc
i (di) with the corresponding contextc into its cache (line 17).

Specifically, if the contextc already exists in IUCachec
i , ai updates the cached results directly

(line 23–27). Here, to make the cached results more effective, ai performs the update only
when subc

i (di) > 0. If the contextc is not in the IUCachec
i and the remaining memory space

memc
i is greater than 0, ai stores the corresponding results as an information unit I and

reduces the remaining memory space memc
i (line 28-30). If ai does not have enough cache

capacity to store a new information unit, it will perform certain cache replacement procedure
(line 31–32). Then, if the current optimal cost opt∗ is identified as the realcost, ai replaces the
upper bound ubi with infinity in BACKTRACK messages to avoid unnecessary re-exploration
(line 19–20). Otherwise, ai needs to report the current upper bound (line 21–22).

BACKTRACK(14,6) BACKTRACK(12,)

Figure 3 An example of RS-based algorithm to show its completeness.

To illustrate the effect of RS, we take Fig.1 as an example. Here, we mainly focus on agent
a4 and points out the difference when RS is applied based on Fig.3. Similar to the example in
Fig.2(a), we assume the upper bound for x1 = 0 is 20, a4 receives the same CPA message and
prunes the search space corresponding to 0, as illustrated in Fig.3(a). However, different from
OCS, the RS additionally constructs sub6

4 and sub5
4 and set sub5

4(0) = sub6
4(0) = 0 (line 12–

13). Then, a4 explores its next feasible assignment x4 = 1 and stores the best costs and

CP 2022

39:10 Towards Efficient Caching for DCOPs

upper bound sent from its children, respectively. Note that, a4 sets sub5
4(1) = sub6

4(1) =∞
since a5 and a6 are leaf agents and the realcosts (opt5

4(1) = 6 and opt6
4(1) = 7) are reported

(line 19–20). After that, a4 caches these results together with the corresponding contexts

(shown in the table) as information units, and sends a BACKTRACK message including
opt∗ = 14 and ubi = 6 to its parent a3, shown in Fig.3(b). Next, when a4 receives a new CPA
message containing Cpa4 = {(x1, 0), (x2, 1), (x3, 0)} like the example in Fig.2(c), different
from OCS which just uses the cached cost and sends a BACKTRACK message with the
suboptimal cost, a4 re-explores the search space corresponding to x4 = 0 since sendubc(0) = 8
is greater than sub5

4(0) = sub6
4(0) = 0 (line 11), and for x4 = 1, it directly reuses the realcosts

stored in cache before. Then, a4 obtains the realcosts for its children by exhausting the
search space and updates IUCache accordingly (line 17, 23-27), shown as Fig.3(c). At
last, a4 calculates opt∗ = 12 which is a realcost and sends it with an infinite upper bound
through a BACKTRACK message to its parent a3 (line 19–20). It can be seen that the
RS successfully guarantees the completeness and brings higher cache utilization compared
to OCS.

3.3 Cache Replacement Scheme
To better make use of the cached items with limited memory, a cache replacement scheme
is necessary since such a good scheme can often bring higher cache utilization and improve
the performance of algorithms. Yeoh et al [30] proposed three cache replacement schemes
for asynchronous algorithms, including MaxPriority, MaxEffort and MaxUtility Scheme. All
these schemes allow each agent to make decisions according to heuristics constructed by
reordering the cached information units. However, none of them can be applied to synchronous
algorithms directly due to the fact that the valid information to cache is actually different
between synchronous and asynchronous algorithm. Besides, for synchronous algorithms,
there is no other relevant research on cache replacement schemes reported before. Based on
the background, we introduce two feasible cache replacement schemes including UB and SYS
to match our RS for synchronous algorithms.

Specifically, we construct a heuristic scheme named UB in which ai sorts the cached
information units according to subc, which allows new information units to preempt the unit
with the smallest subc in the cache. It is because the larger the subc, the more likely the
optc regarding it is the realcost.

In addition, we propose another cache replacement scheme named SYS by carrying out
the FIFO (First-In-First-Out) scheme only when a specific agent changes its value. It gives
full play to the advantages of the FIFO scheme in synchronous algorithms, and avoids the
disadvantages caused by frequent cache replacement. Before introducing the SYS scheme,
we first give some notations as follows.

H(ai) is the height of ai on the pseudo tree. In particular, the height of root agent is 0.
SepQc

i is a queue containing all the Sep(ac) agents for ac ∈ C(ai), which is sorted by the
height in a reverse order, i.e., H (SepQc

i (m)) > H (SepQc
i (m + 1)) where m is the index

of SepQc
i . Taking Fig.1(c) as an example, SepQ6

4 = {a4, a3, a1}.

In synchronous algorithms, each agent changes its assignment orderly according to its
height on a pseudo tree. That is, the root agent changes its value far less than the leaf
agents, which also means an agent with larger index in SepQc

i changes its assignment less
frequently. Hence, it seems that the traditional FIFO scheme is suitable for synchronous
algorithms. Consider a4 in Fig.1(c), when a1 changes to its next assignment, i.e., x4 = 1, the

J. Wang, D. Chen, Z. Chen, X. Liu, and J. Gao 39:11

items with context6 = {(x1, 0), (x3, d3), (x4, d4)},∀d3 ∈ D3, d4 ∈ D4 cached in information
unit cache IUCache actually expire, since the next context6 is no longer similar to that
a4 cached before for a6. Therefore, if a4 adopts the FIFO scheme, it only needs |D3||D4|
memory for a6 to cache the reported results. However, naively using the FIFO scheme might
bring some issues in some situations. Still take a4 in Fig.1(c) as an example and assume
the allocated memory mem5

4 for its child a5 is limited to |D4|. If a4 directly uses the FIFO
scheme, it starts to replace the cached items under x3 = 0 once a3 changes to 1. However,
it is clear that when a2 changes to its next value, the items a4 cached under x3 = 0 is still
valid, but they have already been replaced by that under x3 = 1. As a result, according to
the FIFO scheme, a4 may replace the cached items frequently, leading to the fact that items
always are unused before replaced. Therefore, the SYS scheme aims to overcome the issue by
finding the first agent aj satisfying Eq.(6) for each child ac and then discarding the search
results directly if aj = null or the assignment of aj in the current contextc is consistent with
that in the cached items. Otherwise, ai utilizes the FIFO scheme to replace the cached items.

aj = SepQc
i (m) s.t. P (SepQc

i (m− 1)) ̸= SepQc
i (m) , m ⩾ ⌊log|Di| memc

i⌋ (6)

Still take Fig.1(c) as an example and assume the initialized memory space mem5
4 = mem6

4 =
|D4|. Different from that in the FIFO scheme where a4 always replaces the new contexti for
the cached ones when the IUCache is full, in SYS a4 does not replace the cached items and
directly discards the current search results for a5 since aj = null. Similarly, for child a6, a4
does not replace either until aj(a1) changes its assignment.

4 Theoretical Results

In this section, we prove the completeness of the Retention Scheme (RS), and give the
complexity analysis of the proposed method.

▶ Lemma 1. The optimal cost opt∗ reported by ai is the realcost if opt∗ < ubi.

Proof. Assuming that the opt∗ reported by ai is not the realcost, there must exist a realcost,
called cost∗, which satisfies cost∗ < opt∗. Therefore, the cost∗ must have been pruned since
only the current best cost opt∗ found so far is reported. However, in tree-based complete
synchronous search algorithms, only when cost∗ ⩾ ubi, pruning is carried out, which leads to
a contradiction to the condition opt∗ < ubi in lemma 1. Thus, Lemma 1 is proved. ◀

▶ Lemma 2. Given a same contexti, assume that ai gets a suboptimal cost under ubi. If the
newly-received upper bound ub′

i for ai is less than ubi, i.e.,ub′
i < ubi, ai still gets a suboptimal

cost.

Proof. According to Lemma 1, the suboptimal cost opt∗ should satisfy opt∗ ⩾ ubi owing to
opt∗ is not a realcost. Therefore, we have opt∗ ⩾ ubi > ub′

i, which indicates that a realcost

can not be obtained by exploring with ub′
i either. Thus, Lemma 2 is proved. ◀

▶ Theorem 3. The RS is complete.

Proof. According to Lemma 1 and Lemma 2, the RS only utilizes the realcosts and the
additional pruning judgement it adopts does not affect the exploration for such realcosts.
Thus, the RS is complete. ◀

It is worth noting that the completeness of the RS will not be affected by the arity
of constraint functions as it is related only to the cached results of historical exploration.
Besides, the cache replacement schemes do not hurt the completeness of the RS as they only
determine which results explored should be stored in the cache.

CP 2022

39:12 Towards Efficient Caching for DCOPs

4.1 Complexity

When applied to existing tree-based complete synchronous search algorithms, the RS does not
introduce any new messages, and it only attaches the current upper bound to a BACKTRACK
message which only requires linear memory.

For each agent ai, assuming it has enough memory to store all the search results, it
requires |Di||Sep(ac)| memory to cache the items for its child ac ∈ C(ai). Therefore, the
overall consumption is O

(
|C (ai) ||Di|Sep

)
, where Sep = maxac∈C(ai) |Sep(ac)|. On the other

hand, for each agent ai, it traverses the information unit cache IUCache to map for its
child ac ∈ C(ai), which requires a linear time complexity. So, the entire time complexity is
O(|C(ai)|).

Besides, for the cache replacement schemes, UB requires O
(
|C(ai)||Di|Sep log |Di|Sep

)
time complexity to perform quick sort for information units, while for SYS it only needs
O(1) to calculate the specific agent by Eq.(6).

5 Empirical Evaluation

In this section, we apply the RS to state-of-the-art tree-based complete synchronous search
algorithms, and compare them against the originals. Then, when the memory is limited, we
investigate the effects of different cache replacement schemes on the RS-based algorithms.

5.1 Experimental Configuration

In order to evaluate the effect of RS, we apply it to tree-based complete synchronous
algorithms including TreeBB, PT-FB, HS-CAI and PT-ISBB (a variant of PT-ISABB [8] in
DCOP settings), and name the corresponding RS-based version as TreeBB+RS, PT-FB+RS,
HS-CAI+RS and PT-ISBB+RS. Specially, to ensure the completeness of OCS when applied
to TreeBB for fairness, we also append the upper bound to the information unit and name
it as TreeBB+OCS. Besides, we uniformly use the SYS scheme to manage memory when
the cache is full. In our experiments, we will compare these RS-based algorithms with their
originals on random DCOPs and weighted graph coloring problems. For random DCOPs,
we set the graph density to 0.2, the domain size to 3 and vary the agent number from 16
to 28 as the sparse configuration, and the graph density to 0.5, the domain size to 3 and
the number of agents varying from 14 to 24 as the dense configuration. For weighted graph
coloring problems, similar to the sparse configuration in random DCOPs, we set the graph
density to 0.2, the domain size to 3 and vary the agent number from 16 to 28. Besides, we
choose k = 4 and k = 8 as the low and high memory budget for HS-CAI, PT-ISBB and
RS, respectively. Furthermore, we compare the performance of different cache replacement
schemes including FIFO (First In First Out), FILO (First In Last Out), LRU (Least Recently
Used) and LFU (Least Frequently Used), UB, SYS and ORI (an original scheme which
discards the next results when the cache is full.) when they are applied to TreeBB+RS, on
the dense configuration for random DCOPs and low memory budget. We use the number of
messages (Msgs) to measure the communication overheads, and the NCLOs [21] to measure
the hardware-independent runtime where the logical operations in the inference and the
search are accesses to utilities and constraint checks, respectively. For each experiment, we
randomly generate 50 instances with the integer constraint costs in the range of 0 to 100,
and report the average over all instances. The experiments are conducted on an i7-7820x
workstation with 32GB of memory, and we set the timeout to 30 minutes for each algorithm.

J. Wang, D. Chen, Z. Chen, X. Liu, and J. Gao 39:13

5.2 Experimental Results
Table 1 gives the detailed results of the improvement of the RS-based algorithms over their
originals including both memory budget k = 4 and k = 8, where the numbers greater than
zero are shown in bold. It can be seen that the RS-based algorithms outperform the originals
on both metrics under both low and high memory budget, i.e., k = 4 and k = 8. Besides,
the improvement under k = 8 is slightly higher than that under k = 4 in most cases since
with larger memory, the RS-based algorithms can cache more realcosts for reuse. However,
since the number of valid realcost is limited, such an improvement fades away. Next, Fig.4
to Fig.6 give the experimental results for the sparse random DCOPs, dense random DCOPs
and weighted graph coloring problems with k = 4, and we do not present the results with
k = 8 since they are of the same trend as that with k = 4.

Table 1 The improvement of the RS-based algorithms over their respective originals.

Configuration k
TreeBB+OCS TreeBB+RS PTFB+RS PT-ISBB+RS HS-CAI+RS

Msgs(%) NCLOs(%) Msgs(%) NCLOs(%) Msgs(%) NCLOs(%) Msgs(%) NCLOs(%) Msgs(%) NCLOs(%)

Sparse DCOPs 4 84∼88 81∼86 95∼98 94∼97 71∼86 58∼77 29∼57 16∼52 18∼34 3∼8
8 85∼89 81∼87 96∼99 95∼98 72∼87 59∼78 30∼49 1∼17 20∼40 0∼5

Dense DCOPs 4 45∼50 40∼44 72∼76 65∼71 19∼40 13∼42 9∼23 9∼34 2∼8 0∼2
8 46∼50 41∼45 74∼80 69∼75 20∼42 14∼43 8∼15 0∼12 2∼15 0∼6

weighted graph coloring 4 39∼50 45∼49 41∼68 49∼60 39∼52 25∼47 34∼51 19∼40 21∼45 1∼9
8 40∼54 46∼53 41∼71 49∼61 40∼53 26∼47 34∼48 1∼13 35∼50 0∼5

Fig.4 presents the experimental results for the number of messages (a) and NCLOs (b)
under different agent numbers on the sparse configuration for random DCOPs, and the
corresponding improvement over the originals is displayed in the first row of Table 1. It can
be seen that the RS-based algorithms exhibit a great advantage on both metrics over their
originals. Especially for TreeBB and PT-FB, the RS improve them more. It is due to the
fact that compared to PT-ISBB and HS-CAI, TreeBB and PT-FB perform less pruning due
to their less tight lower bounds. Therefore, the cached results could be more likely to be the
realcost and reused more frequently. Besides, it can be seen from Table 1 that TreeBB+RS
is superior to TreeBB+OCS by about 10% on the the sparse problems, which indicates the
fine-grained caching could indeed boost the cache-hit rate.

16 18 20 22 24 26 28
Agent Number

103

104

105

106

107

M
es

sa
ge

 N
um

be
r

TreeBB
TreeBB+OCS(k=4)
TreeBB+RS(k=4)
PT-FB
PT-FB+RS(k=4)
HS-CAI(k=4)
HS-CAI(k=4)+RS(k=4)
PT-ISBB(k=4)
PT-ISBB(k=4)+RS(k=4)

(a) Number of Messages.

16 18 20 22 24 26 28
Agent Number

103

104

105

106

107

NC
LO

s

(b) NCLOs.

Figure 4 Performance comparison under different agents on sparse DCOPs.

We can also see from Fig.4 that with the help of the RS, TreeBB and PT-FB solved larger
problems, scaling up to the problems with 26 agents and with 28 agents, respectively.

CP 2022

39:14 Towards Efficient Caching for DCOPs

10 12 14 16 18 20 22
Agent Number

103

104

105

106

107
M

es
sa

ge
 N

um
be

r

TreeBB
TreeBB+OCS(k=4)
TreeBB+RS(k=4)
PT-FB
PT-FB+RS(k=4)
HS-CAI(k=4)
HS-CAI(k=4)+RS(k=4)
PT-ISBB(k=4)
PT-ISBB(k=4)+RS(k=4)

(a) Number of Messages.

10 12 14 16 18 20 22
Agent Number

103

104

105

106

107

NC
LO

s

(b) NCLOs.

Figure 5 Performance comparison under different agents on dense DCOPs.

Fig.5 presents the experimental results under different agent numbers on the dense
configuration for random DCOPs, and the third row of Table 1 shows the corresponding
improvement over the originals. It can be seen that the RS-based algorithms also perform
better than their originals in terms of both the number of messages and NCLOs. However,
the improvement of RS decreases compared to that on the sparse configuration. It is because
|Sep(ac)| for each agent ai is larger on the dense configuration. Such large Sep(ac) will lead
to more combinations for the contextc and thus bring down the cache-hit rate. In addition,
ai may not be able to cache all the contextc for large Sep(ac) with its limited memory,
which would lead to the fact that the historical results for some contextc would never be
reused. Moreover, it can be seen from Table 1 that the outperformance of TreeBB+RS over
TreeBB+OCS increases from about 10% on sparse problems to about 25% on dense problems.
It is because under larger |Sep(ai)|, it is more difficult for TreeBB+OCS to match a new
contexti to the cached items, while for TreeBB+RS it is much easier since the latter only
needs to match the subset of |Sep(ai)| for its child.

Fig.6 presents the experimental results under different agent numbers on weighted graph
coloring problems, and the corresponding improvement over the originals can be found in
the fifth row of Table 1. It can be seen that our RS can greatly improve the performance of
the originals on both metrics, which is similar to the results on random DCOPs. It is worth
noting that, when k = 4, the performance of TreeBB+RS is better than all other competitors
without RS on the number of messages, which verifies that a cache for reusing historical
results has a more significant role than providing a tighter lower bound on weighted graph
coloring problems.

Table 2 presents the experimental results for TreeBB+RS with different cache replacement
schemes. We can find that our proposed cache replacement schemes perform better than other
competitors in most cases. It is because ORI, FIFO, FILO, LRU, LFU are all model-free
cache replacement schemes which ignore the structure of the problems, while our proposed
methods consider the related information such as the cached upper bounds (UB) and the
characteristics of synchronous algorithms (SYS). Besides, the SYS is better than UB in
this case, as the SYS aims at the characteristics of sequential assignments in synchronous
algorithms and adjusts itself by the initialized memory.

J. Wang, D. Chen, Z. Chen, X. Liu, and J. Gao 39:15

16 18 20 22 24 26 28
Agent Number

103

104

M
es

sa
ge

 N
um

be
r

TreeBB
TreeBB+OCS(k=4)
TreeBB+RS(k=4)
PT-FB
PT-FB+RS(k=4)
HS-CAI(k=4)
HS-CAI(k=4)+RS(k=4)
PT-ISBB(k=4)
PT-ISBB(k=4)+RS(k=4)

(a) Number of Messages.

16 18 20 22 24 26 28
Agent Number

103

104

105

106

NC
LO

s

(b) NCLOs.

Figure 6 Performance comparison under different agents on weighted graph coloring problems.

Table 2 Performance comparison under different cache replacement schemes on dense DCOPs.

Scheme Metrics Agent Number Metrics Agent Number
10 12 14 16 18 10 12 14 16 18

ORI

Msgs

1463 10841 84208 569718 3890905

NCLOs

5133 49443 449313 3626525 28718461
FIFO 1489 8717 52018 342777 2449699 5214 40978 306201 2353110 19653448
FILO 1466 10748 83715 566028 3825017 5135 48909 445818 3597353 28243741
LRU 1480 8705 52057 342724 2449808 5215 40971 306211 2352837 19655744
LFU 1466 10744 83521 565403 3840109 5137 48864 444652 3592756 28323712
UB 1481 8705 52003 342767 2449665 5215 40972 306185 2353149 19653238
SYS 1433 8619 51412 340792 2437553 5002 40666 303945 2347033 19578876

6 Conclusion

To overcome the shortcomings of OCS, we propose a new caching scheme named RS, which
can be deployed to all tree-based complete synchronous search algorithms with minor
modifications. It ensures the completeness of the algorithms by appending the upper bound
to the information unit and further improves the cache utilization by adopting a fine-grained
cache information unit. Besides, we also propose two cache replacement schemes UB and SYS
to improve the performance of RS when the memory is limited. Finally, we give a theoretical
proof for the completeness of RS, and our empirical evaluation shows the superiority of
the RS-based algorithms over their originals and the advantage of our cache replacement
schemes over the traditional ones. In the future, we will devote to further optimizing the
cache information units and designing more appropriate cache replacement schemes for RS.

References

1 James Atlas, Matt Warner, and Keith Decker. A memory bounded hybrid approach to
distributed constraint optimization. In Proc. 10th International Workshop on Distributed
Constraint Reasoning, pages 37–51, 2008.

2 Ismel Brito and Pedro Meseguer. Improving DPOP with function filtering. In AAMAS, volume
1435, pages 141–148, 2010.

3 Anton Chechetka and Katia Sycara. No-commitment branch and bound search for distrib-
uted constraint optimization. In Proceedings of the fifth international joint conference on
Autonomous agents and multiagent systems, pages 1427–1429, 2006.

CP 2022

39:16 Towards Efficient Caching for DCOPs

4 Anton Chechetka and Katia P Sycara. An Any-space Algorithm for Distributed Constraint
Optimization. In AAAI Spring Symposium: Distributed Plan and Schedule Management, pages
33–40, 2006.

5 Dingding Chen, Yanchen Deng, Ziyu Chen, Wenxing Zhang, and Zhongshi He. HS-CAI: A
hybrid DCOP algorithm via combining search with context-based inference. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34, pages 7087–7094, 2020.

6 Ziyu Chen, Wenxin Zhang, Yanchen Deng, Dingding Chen, and Qiang Li. RMB-DPOP:
Refining MB-DPOP by Reducing Redundant Inference. In Proceedings of the 19th International
Conference on Autonomous Agents and MultiAgent Systems, pages 249–257, 2020.

7 Rina Dechter, David Cohen, et al. Constraint processing. Morgan Kaufmann, 2003.
8 Yanchen Deng, Ziyu Chen, Dingding Chen, Xingqiong Jiang, and Qiang Li. PT-ISABB: A

Hybrid Tree-based Complete Algorithm to Solve Asymmetric Distributed Constraint Optimiz-
ation Problems. In Proceedings of the 18th International Conference on Autonomous Agents
and MultiAgent Systems, pages 1506–1514, 2019.

9 Alessandro Farinelli, Alex Rogers, and Nick R Jennings. Agent-based decentralised coordination
for sensor networks using the max-sum algorithm. Autonomous agents and multi-agent systems,
28(3):337–380, 2014.

10 Alessandro Farinelli, Alex Rogers, Adrian Petcu, and Nicholas R Jennings. Decentralised
coordination of low-power embedded devices using the max-sum algorithm. In Proceedings of
the 7th international joint conference on Autonomous agents and multiagent systems-Volume
2, pages 639–646, 2008.

11 Ferdinando Fioretto, Enrico Pontelli, and William Yeoh. Distributed constraint optimization
problems and applications: A survey. Journal of Artificial Intelligence Research, 61:623–698,
2018.

12 Ferdinando Fioretto, William Yeoh, Enrico Pontelli, Ye Ma, and Satishkumar J Ranade. A
distributed constraint optimization (DCOP) approach to the economic dispatch with demand
response. In Proceedings of the 16th Conference on Autonomous Agents and MultiAgent
Systems, pages 999–1007, 2017.

13 Eugene C Freuder and Michael J Quinn. Taking Advantage of Stable Sets of Variables in
Constraint Satisfaction Problems. In IJCAI, volume 85, pages 1076–1078. Citeseer, 1985.

14 Patricia Gutierrez and Pedro Meseguer. BnB-ADOPT+ with Several Soft Arc Consistency
Levels. In ECAI, pages 67–72, 2010.

15 Katsutoshi Hirayama and Makoto Yokoo. Distributed partial constraint satisfaction problem.
In International conference on principles and practice of constraint programming, pages 222–236.
Springer, 1997.

16 Omer Litov and Amnon Meisels. Forward bounding on pseudo-trees for DCOPs and ADCOPs.
Artificial Intelligence, 252:83–99, 2017.

17 Rajiv T Maheswaran, Jonathan P Pearce, and Milind Tambe. A family of graphical-game-based
algorithms for distributed constraint optimization problems. In Coordination of large-scale
multiagent systems, pages 127–146. Springer, 2006.

18 Rajiv T Maheswaran, Milind Tambe, Emma Bowring, Jonathan P Pearce, and Pradeep
Varakantham. Taking dcop to the real world: Efficient complete solutions for distributed multi-
event scheduling. In Proceedings of the Third International Joint Conference on Autonomous
Agents and Multiagent Systems-Volume 1, pages 310–317, 2004.

19 Toshihiro Matsui, Hiroshi Matsuo, and Akira Iwata. Efficient Methods for Asynchronous
Distributed Constraint Optimization Algorithm. In Artificial Intelligence and Applications,
pages 727–732, 2005.

20 Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo. ADOPT: Asynchronous
distributed constraint optimization with quality guarantees. Artificial Intelligence, 161(1-
2):149–180, 2005.

21 Arnon Netzer, Alon Grubshtein, and Amnon Meisels. Concurrent forward bounding for
distributed constraint optimization problems. Artificial Intelligence, 193:186–216, 2012.

J. Wang, D. Chen, Z. Chen, X. Liu, and J. Gao 39:17

22 Duc Thien Nguyen, William Yeoh, Hoong Chuin Lau, and Roie Zivan. Distributed gibbs:
A linear-space sampling-based DCOP algorithm. Journal of Artificial Intelligence Research,
64:705–748, 2019.

23 Brammert Ottens, Christos Dimitrakakis, and Boi Faltings. DUCT: An upper confidence
bound approach to distributed constraint optimization problems. ACM Transactions on
Intelligent Systems and Technology (TIST), 8(5):1–27, 2017.

24 Adrian Petcu and Boi Faltings. DPOP: A scalable method for multiagent constraint optimiza-
tion. In IJCAI 05, pages 266–271, 2005.

25 Adrian Petcu and Boi Faltings. ODPOP: An algorithm for open/distributed constraint
optimization. In AAAI, volume 6, pages 703–708, 2006.

26 Adrian Petcu and Boi Faltings. MB-DPOP: A New Memory-Bounded Algorithm for Distributed
Optimization. In IJCAI, pages 1452–1457, 2007.

27 Evan Sultanik, Pragnesh Jay Modi, and William C Regli. On Modeling Multiagent Task
Scheduling as a Distributed Constraint Optimization Problem. In IJCAI, pages 1531–1536,
2007.

28 Meritxell Vinyals, Juan A Rodriguez-Aguilar, Jesús Cerquides, et al. Generalizing DPOP:
Action-GDL, a new complete algorithm for DCOPs. In AAMAS (2), pages 1239–1240, 2009.

29 William Yeoh, Ariel Felner, and Sven Koenig. BnB-ADOPT: An asynchronous branch-and-
bound DCOP algorithm. Journal of Artificial Intelligence Research, 38:85–133, 2010.

30 William Yeoh, Pradeep Varakantham, and Sven Koenig. Caching schemes for DCOP search
algorithms. In AAMAS (1), pages 609–616, 2009.

31 Weixiong Zhang, Guandong Wang, Zhao Xing, and Lars Wittenburg. Distributed stochastic
search and distributed breakout: properties, comparison and applications to constraint optim-
ization problems in sensor networks. Artificial Intelligence, 161(1-2):55–87, 2005.

CP 2022

	1 Introduction
	2 Background
	2.1 Distributed Constraint optimization Problems
	2.2 Pseudo Tree
	2.3 Tree-based Complete Synchronous Search Algorithms
	2.4 Caching Scheme in Any-space NCBB

	3 Proposed Method
	3.1 Motivation
	3.2 Retention Scheme
	3.3 Cache Replacement Scheme

	4 Theoretical Results
	4.1 Complexity

	5 Empirical Evaluation
	5.1 Experimental Configuration
	5.2 Experimental Results

	6 Conclusion

