
A Partial Decision Scheme for Local Search Algorithms

for Distributed Constraint Optimization Problems

Zhepeng Yu, Ziyu Chen*, Jingyuan He, Yancheng Deng1

College of Computer Science, Chongqing University, Chongqing, China

{20141402053, chenziyu, ibm_hjy}@cqu.edu.cn
1dyc941126@126.com

ABSTRACT

Local search algorithms are widely adopted in solving large-scale

Distributed Constraint Optimization Problems (DCOPs). However,

since each agent always makes its value decision based on the

values of its neighbors in local search, those algorithms usually

suffer from local premature convergence. More concretely, an

agent cannot make a wise decision with poor values of its

neighbors since its decision space is bound up with those poor

values. In this paper, we propose a Partial Decision Scheme (PDS)

to relax the decision space of an agent by ignoring the value of its

neighbor which has the bad impact on its local benefits. The PDS

comprises two partial decision processes: trigger partial decision

and recursive partial decision. The former is iteratively performed

by agents who cannot enhance their local benefits unilaterally to

break out of potential local optima. The latter is recursively

performed by neglected agents to improve global benefits. Besides,

the trigger conditions along with a self-adaptive probability are

introduced to control the use of PDS. The PDS can be easily

applied to any local search algorithm to overcome its local

premature convergence with a small additional overhead. In our

theoretical analysis, we prove the feasibility and convergence of

PDS. Moreover, the experimental results also demonstrate the

superiority of the use of PDS in the typical local search algorithms

over state-of-the-art local search algorithms.

Author Keywords: Multi-agent System; Distributed

Constraint Optimization Problem; Incomplete Algorithm; Local

Search Algorithm; Partial Decision

1. INTRODUCTION
With1the advent of distributed artificial intelligence, multi-agent

systems (MAS) [1] have become a popular way to model the

complex interactions and coordination required to solve

distributed problems. Distributed Constraint Optimization

Problems (DCOPs) are a fundamental framework for modeling

multi-agent coordination problems, widely deployed in real

applications such as task scheduling [2,3], resource allocation [4],

sensor networks [5,6], etc. A DCOP consists of a set of agents,

each holding one or more variables. Each variable has a domain

* corresponding author.

of possible value assignments. Constraints among variables

assign costs to combinations of value assignments [7]. The agents

must coordinate their decisions of value assignments so that the

sum of all the constraints is optimized. Algorithms to solve

DCOPs can be classified as being either complete [8-12] or

incomplete, based on whether they can find the optimal solution

or they get suboptimal solutions with small execution time.

However, since DCOPs are NP-hard [7,8], complete algorithms

incur exponential communication or computation with the

increase of scale and complexity of problems, which limits their

use in many real applications. Incomplete algorithms which

require very little local computation and communication to find

suboptimal solutions can be well applied to large-scale practical

distributed applications. Therefore, there has been growing

interest in the last few years in incomplete DCOP algorithms.

Incomplete algorithms generally include the following three

categories [13]: local search algorithms, inference-based

algorithms and sampling-based algorithms. Inference-based

incomplete algorithms like Max-Sum [14] and its variants [15,16]

allow agents to exploit the structure of a constraint graph to

aggregate rewards from their neighbors but are more appropriate

to acyclic DCOP graphs. Sampling-based incomplete algorithms

like DUCT [17] and D-Gibbs [18] sample the search space to

approximate a function as a product of statistical inference [13].

Local search algorithms are the most popular incomplete

methods for DCOPs, where each agent optimizes based on its

local constraints and the values received from all its neighbors,

such as DSA [19], DBA [19,20] and MGM [21]. However, Local

search algorithms are prone to converge to local optima. DSAN

[22] tries to improve DSA by sacrificing individual benefits

restricted by the neighbor values. But the algorithm is more

suitable for Distributed Constraint Satisfaction Problems (DCSPs).

K-optimality [23,24] was proposed to improve the solution of

local convergence by coordinating the decision of all agents

within the K-size coalition, such as MGM-2 [21], MGM-3 [25]

and KOPT [26]. However, one of the difficulties in K-optimality

algorithms involves the definition of K. Moreover, with the

increase of K, these algorithms require greater computational

effort to find a K-optimal solution [25]. Recently, an anytime

local search (ALS) framework with some exploration heuristics [7]

are presented to enhance local search algorithms. For example,

DSA-PPIRA uses a periodic increase in the level of exploration

and DSA-SDP employs an explorative probability with regard to

the potential improvement. Besides, random restart was

introduced into the ALS framework as an algorithm-independent

heuristic to facilitate exploration in incomplete DCOP algorithms.

By analyzing the local search process, we find that the decision

space of an agent is partitioned in terms of the values of its

neighbors since its value decision heavily relies on the values of

its neighbors. If always receiving the same values from its

Appears in: Proc. of the 16th International Conference on Autonomous

Agents and Multiagent Systems (AAMAS 2017),

S. Das, E. Durfee, K. Larson, M. Winikoff (eds.)

May 8–12, 2017, São Paulo, Brazil.

Copyright © 2017, International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

187

neighbors, an agent will get into the same decision partitions and

have no opportunity to search other promising partitions. That

will lead to local premature convergence. The paper presents a

partial decision scheme (PDS) to enable an agent to search the

promising decision partitions by ignoring some bad value of its

neighbor to enhance its local benefits, and coordinate the decision

of its neglected neighbor to improve global benefits. The PDS

breaks the assignment dependence on the neighbor values and

help local search to escape from local optima.

The paper is organized as follows. In Section 2, we present the

DCOP definition and the local search framework. Section 3

illustrates the details of our proposed scheme (PDS). Section 4

proves the feasibility and convergence of PDS. In Section 5, an

experimental study is presented to evaluate PDS when combined

with the typical local search algorithms in comparison with

existing local search algorithms. Finally, Section 6 concludes this

paper.

2. Background

2.1 Distributed Constraint Optimization Pro-

blems
A DCOP can be represented by a tuple , , ,A X D C such that:

 1 2, , , mA a a a  is a set of agents;  1 2, , , nX x x x  is a set of

variables, where each variable is assigned to an agent;

 1 2, , , nD D D D  is a set of finite and discrete domains, where

Di is the domain of variable xi;  1 2, ,..., kC c c c is a set of

constraints, where each constraint
1

:
qi i ic D D  + specifies

a non-negative cost for every possible value combination of a set

of variables [7,8].

Given this, the goal for the agents is to find the joint variable

assignment X* such that a given global objective function is

minimized. Generally, the objective function is described as the

sum over C.

To facilitate understanding, this paper assumes that each agent

has a single variable and constraints are binary relations. Here, the

term ‘agent’ and ‘variable’ can be used interchangeably. A binary

constraint is a constraint involving exactly two variables defined

as :ij i jc D D +. The joint variable assignment X* is obtained

as follows:

,

 c

* arg min (,)
i i j j

ij

ij i i j j

v D v D

C

X c x v x v
 



   (1)

 (a) constraint graph (b) constraint matrices

Figure 1. A DCOP instance

It is common that a DCOP problem is visualized as a constraint

graph where the nodes are the agents and the edges are the

constraints. Figure 1 shows an example of a DCOP problem

whose constraint graph and constraint matrices are shown in

Figure 1(a) and Figure 1(b), respectively. The DCOP instance

includes 4 variables, each of which takes a value in {1, 2}, and the

cells of the constraint matrices contain the costs of the assignment

in Figure 1(b).

2.2 Local Search Framework for DCOPs
The general design of local search algorithms for DCOPs is

synchronous. In each round of a basic local search framework, an

agent sends its value to all its neighbors in the constraint graph

and receives the values of its neighbors. Then, the agent will

select a value in terms of the values of its neighbors and decide

whether to replace its value according to a replacement strategy.

The main difference among local search algorithms is replacement

strategy. For example, agents in DSA stochastically replaces their

value every round if the replacements can reduce their local costs

while only agents with maximal gains among their neighbors can

replace their values in MGM. Here, we only present one algorithm

that applies to this general framework, the Distributed Stochastic

Algorithm (DSA).

Algorithm 1: Distributed Stochastic Algorithm (DSA)

For each agent xi executes:

1. value ← Choose_Random_Value()

2. send value to neighbors

3. while (no termination condition is met)

4. collect neighbors’ value

5. select a new value which reduces the local cost most

6. Δ ← the number of the cost reduced by the new value

7. if (Δ > 0 and random() < p)

8. assign the new value

9. send value to neighbors

Figure 2. A framework of DSA

The basic idea of the DSA algorithm is simple. A sketch of

DSA is presented in Figure 2. An agent xi starts with an initial

process in which xi assigns a random value and sends the value to

all its neighbors (line 1-2). Then, xi performs a sequence of rounds

until the termination condition is met. In each round (line 4-9), xi

collects the assignments of its neighbors and selects a new value

to reduce the local cost most. Then, it decides, often stochastically,

to keep the current value or change to the new one, if Δ > 0 (see

[19] for details on the possible strategies). In this paper, we call

the process in each round “local search”.

3. Partial Decision Scheme

3.1 Motivation
Let us take Figure 1 as an example to illustrate the matter of local

convergence and the idea of the proposed scheme when DSA is

carried out. Assume that all agents assign as 1 after many rounds

and send their value 1 to their neighbors in the next round. x1 will

receive x2=1 and x3=1, and try to select a new value to reduce the

current local cost (line 4-6) in terms of its decision partitions

pertaining to x2=1 and x3=1 (i.e., the white columns of the

constraint matrices of x1 shown in Figure 3). In other words, x1

has no chance to search other partitions (i.e., the gray columns

shown in Figure 3). x1 will not change its value (line 7 will be

false) since its value 1 results in the minimal local cost 5 based on

the decision partition.

 However, it can be observed from the constraint matrices of x1

that the best value of x1 is 2 with the minimal local cost 3 if x2 and

x1

x2

x4 x3

188

x3 select 2 and 1, respectively. Unfortunately, x1 will not change

its value unless x2 and x3 change their values. Similarly, x2, x3 and

x4 will not change their values upon receiving 1 from their

neighbors according to the constraint matrices in Figure 1(b). At

this point, DSA converges to a local minimum.

x2

x1
1 2

x3

x1
1 2

1 4 3 1 1 3

2 5 1 2 2 4

Figure 3. The decision partition of x1 with x2=1 and x3=1

x2

x1
1 2

x3

x1
1 2

1 4 3 1 1 3

2 5 1 2 2 4

Figure 4. The decision partition of x1 after ignoring x2=1

We hope to escape from a local minimum by breaking the

assignment dependences among the neighbors. Our idea is to

enable an agent to search the promising decision partitions by

ignoring some bad value of its neighbor so as to enhance its local

benefits. For example, x1 can search more decision partitions and

get the min cost 3 when ignoring x2=1, shown in Figure 4.

However, to achieve its improvement, an agent who neglects its

neighbor must provide the suggested value and its gain to the

neglected neighbor. The neglected neighbor will decide to accept

or refuse the suggestion based on its local benefits and the

received gain to ensure the improvement of global benefits. In this

example, x1 can get the local cost 3 by ignoring x2=1 or 9 by

ignoring x3=1. Therefore, x1 will ignore x2=1 and change its own

value to 2 under the assumption that x2=2. Meanwhile, it will

inform the suggestion (x2=2 and gain=2) along with its new value

to x2. Based on its constraint matrices and the received gain, x2

will get the accumulated gain by accepting x2=2 and ignoring x4=1.

So, x2 will change its value to 2 and inform the suggestion (x4=2

and gain=2) along with its new value to x4. Eventually, x1, x2, x3

and x4 take 2, 2, 1 and 2, respectively, which is the best solution

to the example. On the basis of the above procedure, we propose a

partial decision scheme (PDS).

3.2 Framework of Partial Decision Scheme
The PDS includes two partial decision processes, trigger partial

decision and recursive partial decision. It can be easily applied to

any local search algorithm (the pseudocode is shown in Figure 5).

Trigger conditions. As shown in the example of Subsection 3.1,

partial decision should be performed when an agent converges to

a local minimum. In other words, only if an agent cannot improve

its state by performing the original local search scheme, partial

decision should be triggered; otherwise, the original local search

might be broken and cannot come into play when introducing

partial decision. However, it is hard for an agent to identify

whether the current local search process has gotten stuck in a true

local minimum due to the lack of global information. Therefore,

referring to quasi-local minimum (QLM) in [27], we introduce

potential-local minimum (PLM) and a self-adaptive partial

decision probability (PDP) to control the use of PDS.

Algorithm 2: PDS for a local search algorithm

For each agent xi executes:

10. initialize Local Search Algorithm

11. while (no termination condition is met)

12. if receiving suggestion_message{v*s，gs}

13. Dispose_suggestion_message(v*s，gs)

14. calculate probability PDPi

15. create a random number ri (0< ri <1)

16. if xi is in a PLM and ri < PDPi

17. Trigger_partial_decision()

18. else

19. perform Local Search

Trigger_partial_decision()

20. select a neighbor xI randomly

21. calculate value v*i and v*I by formula (8) and (9)

22. calculate the min local cost c*i by formula (10)

23. gi ← ci – c*i

24. if (gi > 0)

25. assign value v*i

26. send suggestion_message{ v*I，gi } to xI

Dispose_suggestion_message(v*s，gs)

27. v*i ← v*s

28. calculate the union gain gu by formula (12)

29. if (gu > 0)

30. assign value v*i

31. go to line 11

32. else

33. Recursive_partial_decision()

Recursive_partial_decision()

34. find xI by formula (13)

35. calculate value vI* by formula (14)

36 calculate gi by formula (15)

37. if (gi > 0)

38. assign value v*i

39. send suggestion_message{v*I，gi} to xI

40. go to line 11

Figure 5. A PDS-based local search Algorithm executed by xi

Definition 1: An agent xi is in a potential-local minimum (PLM) if

xi cannot reduce its cost unilaterally by the original local search

scheme in terms of the received values from all its neighbors.

Here, PLM describes a state which is likely to be or evolve into

a true local minimum. It plays the same role as QLM. However,

PLM is a weaker condition than QLM since an agent detects a

PLM only using its own current information rather than

information about its neighbors. Thus, PLM is easier to be

detected by an agent, which means the tendency of local minima

can be perceived earlier. We also tested the effect of PLM and

QLM on our scheme and found that the algorithms with PLM

performed slightly better than the ones with QLM in terms of

solution quality in the experiment.

When an agent detects that it is in a PLM, it triggers a partial

decision with a partial decision probability (PDP) (line 16-17).

Here, the PDP is formulated in terms of the quality of the current

local solution and the rounds. In order to evaluate the current

solution for xi, a local cost level Li is defined as follows:

min
max min

max min

max min

,

0 ,

i

i

c c
c c

c cL

c c




 
 

 (2)

189

(,), ,
i

i ij i i j j i i j j
j N

c c x v x v v D v D


     (3)

 min ' '
min ' , arg min ' , '

i i j j
i

ij i i j ij i i j j
v D v D

j N

c c x v x c x v x v
 



   
  

   

    

(4)

 max
' '

max ' , arg max ' , '
i i j j

i

ij i i j ij i i j j
v D v D

j N

c c x v x c x v x v
 



   
  

   

    

(5)

 Here, vi and vj are the current value of xi and its neighbor xj,

respectively. ci is the local cost of the current solution for xi. cmin

and cmax are the lower and upper bounds of the local cost of xi,

respectively. Ni is an index set of all neighbors of xi. It can be seen

from formula (2) that the greater the Li, the worse the current local

solution. Additionally, xi will record the minimal Li computed so

far. To accommodate the search process, a PDP for xi is defined

as the following two forms:

_ _

_
i i

M round C round
PDP L

M round


  (6)

_ _

_
i i

M round C round
PDP L

M round


  (7)

 Here, C_round and M_round represent the current and max

rounds, respectively. Max rounds are the maximal synchronic

iterations which are usually used as a termination condition of the

local search. Initially, PDPi is calculated according to formula (6).

Once the optimal Li retains unchanged for T rounds, PDPi is

calculated according to formula (7). In the paper, T= M_round /10.

It can be inferred from formula (6) and (7) that xi with greater Li

has a higher probability to trigger a partial decision and the

influence of PDS will gradually wane with the increase of the

rounds.

Trigger Partial Decision initiates partial decision and will be

performed once the trigger conditions are met. When xi meets

PLM and PDPi, it will call Trigger_partial_decision() (Line 20-

26). Firstly, xi randomly selects one of its neighbors, xI (Line 20).

Then, xi calculates the new value v*i, v*I and the minimal local

cost c*i by formula (8), (9) and (10), respectively (line 21-22). v*i

and v*I are the values of xi and xI corresponding to c*i without

regard to the received value from xI, respectively. vk is the

received value from a neighbor xk.

I' '
* arg min (' ,) min (' , ')

i i I I
i

i i i i ii I Iik k kv D v D
k N
k I

v c x v x v c x v x v
 




 
 
 
 
 

     

(8)

I I'
* argmin (* , ')i iI iI I I

v D
v c x v x v


  

(9)

* (* ,) (* , *)
i

i i i i iiI I Iik k k
k N
k I

c c x v x v c x v x v



     

(10)

gi=ci-c*i

(11)

 Then, xi calculates its gain gi (line 23) by formula (11) and

decides whether to change its current value to v*i by the following

process named ‘decision and replacement’ (line 24-26): If gi is no

greater than 0, which means xi cannot improve its state when

ignoring xI, xi will retain its current value and continue to do the

next round of local search; otherwise, xi will change to v*i and

send a suggestion message to its neighbor xI. The suggestion

message includes the suggested value v*I and the gain gi.

Dispose Suggestion Message is performed by the neglected agent

to decide whether to accept the suggested value or to further

perform partial decision. Upon receiving a suggestion message, xi

will execute Dispose_suggestion_message(v*s, gs). Here, gs and

v*s is the gain and the suggested value in the suggestion message

sent by xs, respectively. xi firstly records v*s as v*i and then

calculates its union gain gu by formula (12) (line 27-28):

,

((,) (* ,))
i

u s ij i i j j ij i i j j
j N j s

g g c x v x v c x v x v
 

       (12)

 If gu is no less than 0, xi will accept the suggestion by changing

its current value to v*i and skip the current round of local search

to avoid the conflict between local search and partial decision

(line 29-31); otherwise, xi will perform recursive partial decision

(line 32-33).

Recursive Partial Decision is performed by the neglected agent

to improve global benefits by ignoring one of its neighbors except

its suggester. Firstly, xi searches its decision space by ignoring the

value of each neighbor except xs to find a neighbor xI which could

minimize xi’s cost if it changed its value vI according to formula

(13) (line 34). Then, xi computes the new value v*I for xI by

formula (14) and the gain gi of all its constraints except cis by

formula (15) (line 35-36). Here, cis has been considered in gs in

the suggestion message.

'

,

argmin (* ,) min (* , ')
j j

i i

i i ij i i j jik k k v Dj N k N
j s k j k s

I c x v x v c x v x v
 

  

 
 
 
 
 

     

(13)

I I'

* argmin (* , ')i iI iI I I
v D

v c x v x v


  

(14)

,

(,)

(* ,) (* , *)

i

i

i ij i i j j
j N
j s

ij i i j j i iiI I I
j N
j s j I

g c x v x v

c x v x v c x v x v





 

 
 
 
 
 

  

     





 (15)

 Next, xi performs the ‘decision and replacement’ process

shown by Trigger Partial Decision. This may recursively trigger

new recursive partial decision for an agent xi receiving the

suggestion message until xi meets gu > 0 or 0ig  (line 37-40).

 It is worth noting that we use the different strategies to select a

neglected neighbor, xI. In trigger partial decision, xI is randomly

selected since the random selection requires only little

computation and can avoid selecting the same neighbor repeatedly

so as to enhance the diversity which is an important concern in

trigger partial decision. In recursive partial decision, xI is

optimally selected since the best choice can guarantee the

improvement of global benefit.

 Additionally, the PDS requires a small overhead. Since the

calculation for Li requires O(1) time, and cmin and cmax can be

computed in preprocessing, the overhead mainly concentrate in

two parts: the extra message number and the time and space

complexity caused by trigger partial decision and recursive partial

decision. Actually, the number of extra messages equals to the

190

number of agents performing partial decision. And, each agent xi

requires O(())
ij Ni i jD N max D  time and  O i iD N space in

trigger partial decision, and *)O(
ii j N jN max D

time and)O(iN

space in recursive partial decision, which is close to the

complexity of local search. Moreover, with the trigger conditions,

there is only a small set of agents executing partial decision. Thus,

the overall overhead is small.

4. Theoretical Analysis
We consider the implementation of the two partial decisions.

Trigger partial decision is performed only if an agent meets PLM

and PDP. Once an agent
0i

x performs trigger partial decision,

there will be two cases.

case 1. Recursive partial decision is recursively performed for

m times (m  0) until the neglected agent
1mi

x


accepts the

suggestion from
mi

x , i.e., gu > 0.

case 2. Recursive partial decision is recursively performed for

m times (m 0) until the neglected agent
1mi

x


cannot improve its

state by means of recursive partial decision, i.e.,
1

0
mi

g

 .

To illustrate the effects of PDS, we assume that the original

local search has gotten stuck in a local minimum before using

PDS, and will not increase the individual cost when using PDS.

Proposition 1 When an agent xi performs trigger partial decision,

the global cost is strictly decreasing in case 1.

proof. We begin by introducing some notations. c(n)
i , c(n)

ij , C(n)

denote the local cost of xi , the constraint cost between xi and xj,

the global cost, respectively, at the end of the n-th round. Assume

that partial decision starts with
0i

x ignoring
1i

x in the n-th round,

then
1i

x receives the suggestion and ignores
2i

x , and recursive

partial decision is recursively performed for m times (m  0)

until
mi

x ignores
1mi

x


in the n+m-th round, and
1mi

x


accepts the

suggestion from
mi

x in the n+m+1-th round. Accordingly, C(n-1)

and C(n+m+1) are the global costs before and after the partial

decision process, respectively. We consider C(n-1) - C(n+m+1).

(1) (1)n n mC C  

0 1 1

0 1 10 1 1

0 1 10

0 1 1

0 10 1 1

0

(1) (1) (1) (1)

, ,...,
, ,...,

(1) (1) (1) (1)

, ,.

[...]

[...

m

i i i mm

mm

m

i i im

m

n n n n

i k i k i k pq

k N k N k N p i i i
q i i ik i k i

n m n m n m n m

i k i k i k pq

k N k N k N p i i

k i k i

c c c c

c c c c











   

   
 

       

   

 

    

    

   

  
1

0 1 1

..,
, ,...,

]
m

m

i
q i i i






 (16)

0 1 1

0 1 10 1 1

0 1 10 1

0 1

0 1

0 1

(1) () (1) () (1)

, ,...,
, ,...,

(1) (2) (1)

[...]

[...

m m

i i i i mm m

mm m

m

i i im

m

n n n m n m n m

i k i k i k i k pq

k N k N k N k N p i i i
q i i ik i k i k i

n n n m

i k i k i k

k N k N k N

k i k i

c c c c c

c c c c









     

    
  

   

  

 

     

    

    

  
1

1 0 1 1

0 1 1

(1) (1)

, ,...,
, ,...,

]
m

i mm

mm

n m n m

i k pq

k N p i i i
q i i ik i

c


 



   

 


 

(17)

0 0 1 1

0 0 1 1

0 0

1 1

1 1

11

0

(1) (1) () (2)

(1) (1) () (1)

(+1)

,

[] [] ...

] []

[

i i i i

m m m m

i i i im m m m

m mm m

n n n n

i k i k i k i k

k N k N k N k N

k i k i

n m n m n m n m

i k i k i k i k

k N k N k N k N

k i k i k i k i

n m

pq

p i i

c c c c

c c c c

c

 

 



  

   

 

      

   

   





     

  



   

    [

1 1 0 1 1

0 1 1 0 1 1

(1)

,..., , ,...,
, ,..., , ,...,

]
m m

m m

n m

pq

i p i i i
q i i i q i i i

c
 

 

 


 

 

 (18)

0 1 1

1 1 1 11 1

1

() (1)

,

...

((,) (* ,))

m m

i k m m i k m mm m

i mm

i i i i

n m n m

i i k k i i k k

k N k i

g g g g

c x v x v c x v x v



    



  

 

     

 
     

 
 



(19)

 

 
0 1 1

0

... 1
m

u

i i i u

g m

g g g g m



 

    

 (20)

Equation (16) partitions the global cost into m+3 parts

corresponding to the order of agents performing partial decision.

In inequation (17), we transforms the summation by c(k+1)
i  c(k)

i

which is due to the fact that the agents can use local search to

decrease its cost. In equation (18), we modify the summation

according to the associative law of addition. In inequation (19),

we transform the summation by equation (11), (15) and the fact

that the gain obtained by an agent xi between two rounds will be

no less than gi by means of the original local search. The final

equation comes by equation (12). Here,
ki

g (0  k  m-1) and gu

are greater than 0 because each neglected agent xi assigns the

suggested value v*i. Thus, C(n+m+1) is always less than C(n-1) in case

1. □

Proposition 2 When an agent xi performs trigger partial decision,

the local search with PDS is equivalent to its original with local

restart in case 2.

proof. Assume that partial decision starts by
0i

x ignoring
1i

x in the

n-th round, then
1i

x receives the suggestion and ignores
2i

x , and

recursive partial decision is recursively performed for m times

(m  0) until
+1mi

x cannot improve its state by means of partial

decision (i.e.,
+1mi

g  0) in the n+m+1-th round. Since
+1mi

x does

not change its value,
mi

x is the last agent assigning the suggested

value. We consider C(n-1) - C(n+m).

(1) ()n n mC C 

0 0 1 1

0 0 1 1

0 0

-1 -1

-1 -1

2 -12 -1

(1) (1) () (2)

(2) () (-1) ()

[] [] ...

] [] 0

i i i i

m m m m

i i i im m m m

m mm m

n n n n

i k i k i k i k

k N k N k N k N

k i k i

n m n m n m n m

i k i k i k i k

k N k N k N k N

k i k i k i k i

c c c c

c c c c



  

   

 

    

   

   

     

   

   

    [
 (21)

 

   

0 0

0 0

0 1 2 1

1

(1) ()

,

(-1) ()

0

...

1
(,) (* ,)

i i

m m

i mm

m m m mi k i km m

n n

i k i k

k N k N

i i i i

k N k i

n m n m
i i i ik k k k

c c m

g g g g

m
c x v x v c x v x v

 





 

 

 

  

      
 



    

 



 (22)

0 0

0 1 2

(1) ()
- (0)

(1)

... (2)
m

n n

i i

u

i i i u

c c m

g m

g g g g m


 


 
     

 (23)

Inequation (21), (22) and equation (23) come according to (18),

(19) and (20). When m = 0,
0i

x is the only agent changing its

value after meeting PLM, so
0 0

(1) ()
-

n n
i ic c is less than 0. However,

when 1m ,
ki

g (0  km-1) is greater than 0 but gu is less than 0

according to Disposing suggestion message (line 27-33).

Consequently, whether C(n+m) is less than C(n-1) is unclear.

191

 At this point,
mi

x has ignored
1mi

x


but
1mi

x


does not assign the

suggested value. Thus, the current value of
mi

x is not the best

response in terms of the values of its neighbors. So, in the next

round,
mi

x will perform the original local search to change the

current value, which could influence its neighbors, especially
1mi

x


.

Similarly, when
mi

x changes its value,
1mi

x


will also perform the

original local search to change its value if
1mi

x


holds
1

*
mi

v


from

equation (14). The above change will happen recursively in more

agents, which is equivalent to a local search with local restart. □

Proposition 3. The convergence of PDS-based algorithms will

eventually depend on their originals.

proof. The convergence of PDS-based algorithms depends on two

factors, the convergence of their original algorithms and the effect

of PDS. It can be seen from formula (6) and (7) that PDP will

gradually approach to zero as C_round grows. With the decrease

of PDP, trigger partial decision is less likely to be executed (line

16). That is, the effect of PDS will be gradually decreased during

the optimization process. Accordingly, more and more agents will

perform the original local search (Line 18-19). Finally, PDS-

based algorithms will perform just like their originals. □

5. Experimental Analysis
In order to demonstrate its effect on distributed local search, the

partial decision scheme (PDS) is applied to DSA (type-C and

p=0.4), DSAN, MGM and MGM2 named as PDS-DSA, PDS-

DSAN, PDS-MGM and PDS-MGM2, respectively. In our

experiments, we will compare these PDS-based algorithms with

their originals and DSA-SDP on three different types of problems:

random DCOPs, scale-free problems and graph-coloring problems.

Here, DSA-SDP is reported the best ALS-DSA with exploration

heuristics in [7]. We average the experimental results over 50

independently generated problems, each of which is solved by

each algorithm 30 times. The compared algorithms except DSA-

SDP are all implemented without the ALS framework.

We consider random DCOPs with n = 120 agents, k = 10

values in each domain, costs chosen from the range   1, 2,..., 100 ,

and constraint density p = 0.1 (sparse problems) or p=0.6 (dense

problems) [7]. For scale-free problems, we generate instances by

Barabáasi-Albert model [28] where an initial set of m0=20

connected agents is used and in each iteration a new agent is

connected to m1=3 other agents for sparse problems or m1=10

other agents for dense problems with a probability proportional to

the number of links that the existing agents already have. Besides,

the other parameter settings in scale-free networks are the same as

ones in random DCOPs. For graph-coloring problems, we use

n=120 agents, the number of colors=3 and the density parameter

p=0.05 [7]. As in standard graph coloring problems, we set the

cost of each violated constraint (two adjacent variables with the

same color) to one. These problems are known to be hard Max-

CSP problems, i.e., beyond the phase transition between solvable

and non-solvable problems [7].

Figure 6. The cost in each step of all 9 algorithms when solving

Random DCOPs (sparse problems)

Figure 7. The cost in each step of all 9 algorithms when solving

Random DCOPs (dense problems)

Figure 6 and Figure 7 show the comparison with PDS-DSA,

PDS-DSAN, PDS-MGM, PDS-MGM-2, their originals and DSA-

SDP on random DCOPs with p = 0.1 and p=0.6, respectively.

It can be seen that the PDS-based algorithms have an obvious

advantage over their originals and DSA-SDP in sparse problems.

The PDS-based algorithms are superior to DSA-SDP by about

2.2%~4.0%. And the improvement of PDS-DSA over DSA is

about 7.8%. PDS-DSAN improves DSAN by about 7.8%. And

the improvement of PDS-MGM and PDS-MGM2 over their

originals are about 11.3% and 4.0%, respectively. However, the

improvements of the PDS-based algorithms over their originals

are not obvious and only about 1.2%~4.5% in dense problems.

Moreover, PDS-MGM2 and PDS-DSA is slightly inferior to

DSA-SDP. In addition, all the PDS-based algorithms have

advantages over their originals at statistically significant level of

p-value < 2.5×10-10 in sparse problem and p-value < 1.9×10-8 in

dense random DCOPs, respectively.

 Besides, it can be found that the PDS-based algorithms have

the similar curves, especially for dense problems. The reason

might be that the PDS leads the local search process since it has a

better search ability than the original local search schemes.

Moreover, we find that PDS-MGM outperforms PDS-MGM2

while MGM2 is better than MGM. The reason is that PDS-MGM

has more chances to perform partial decision in the limited steps

since MGM2 and MGM requires 5 and 2 steps per round,

respectively. Here, the step refers to the communication cycle

between agents.

192

Figure 8. The cost in each step of all 9 algorithms when solving

Scale-Free problems (sparse problems)

Figure 9. The cost in each step of all 9 algorithms when solving

Scale-Free problems (dense problems)

 Figure 8 and Figure 9 show the comparison with all nine

algorithms for solving sparse and dense scale-free problems,

respectively. Similar to random DCOPs, the PDS-based

algorithms have great superiority over their originals in sparse

problems at statistically significant level of p-value < 9.0×10-22.

The improvement of PDS-DSA over DSA is 14.7%. And PDS-

DSAN improves the DSAN by about 12.8%. PDS-MGM and

PDS-MGM2 also outperform their originals by 17.4% and 7.9%,

respectively. Besides, it can be seen that the PDS-based

algorithms are superior to DSA-SDP by about 8.3%~9.2%.

Moreover, the PDS-based algorithms have still advantages over

their originals by about 3.0%~7.4% in dense problems at

statistically significant level of p-value < 3.3×10-9.

 Figure 10 show the comparison with all nine algorithms for

solving graph coloring problems. We can see that DSAN and

PDS-DSAN exhibit more excellent performance over the others.

And, PDS-DSAN has the similar performance with DSAN, which

indicates the local search scheme adopted by DSAN is more

suitable for solving DCSPs. Meanwhile, it can be observed that

the other PDS-based algorithms have improved their originals a

lot, especially for MGM. It illustrates that the PDS is also a good

decision scheme for DCSPs.

6. Conclusion and Future Work
Each agent in the local search process needs to take account of the

current values of all its neighbors so as to select its value, which

would prohibit it from searching some promising solutions. This

Figure 10. The cost in each step of all 9 algorithms when

solving graph coloring problems

paper presents a Partial Decision Scheme to break the assignment

dependence. The PDS comprises trigger partial decision and

recursive partial decision processes. The former is iteratively

performed by agents who meet the trigger conditions, where they

neglect some bad values of their neighbors to enhance their local

benefits and provide the suggested values for the neglected

neighbors. The latter is recursively performed by neglected agents,

where they ignore the values of their neighbors except their

suggesters to improve global benefits. The partial decision scheme

can be applied to any local search algorithm and the experimental

results verify its advantage on benchmark problems.

In the future, we will probe into new solution evaluation and

control mechanism to enhance the convergence speed and

accuracy of PDS-based local search algorithms. In addition, we

will also try to extend the partial decision scheme by ignoring the

values of multiple neighbors.

7. REFERENCES
[1] Pujol-Gonzalez, M. 2011. Multi-agent coordination: Dcops

and beyond. In: Proceedings International Joint Conference

on Artificial Intelligence (IJCAI) (Vol. 22, No. 3, p. 2838).

[2] Enembreck, F., Barthès, J. P. A. 2012. Distributed constraint

optimization with MULBS: A case study on collaborative

meeting scheduling. Journal of Network and Computer

Applications, 35(1), 164-175.

[3] Sultanik, E., Modi, P. J., Regli, W. C. 2007. On Modeling

Multiagent Task Scheduling as a Distributed Constraint

Optimization Problem. In: Proceedings International Joint

Conference on Artificial Intelligence (IJCAI). pp. 1531-1536.

[4] Cheng, S., Raja, A., Xie, J. 2014. Dynamic multi-agent load

balancing using distributed constraint optimization

techniques. Web Intelligence and Agent Systems: An

International Journal, 12(2), 111-138.

[5] Farinelli, A., Rogers, A., Jennings, N. R. 2014. Agent-based

decentralised coordination for sensor networks using the

max-sum algorithm. In: Autonomous agents and multi-agent

systems, 28(3), 337-380.

[6] Muldoon, C., O’Hare, G. M., O’Grady, M. J., Tynan, R.,

Trigoni, N. 2013. Distributed constraint optimization for

resource limited sensor networks. In: Science of Computer

Programming, 78(5), 583-593.

193

[7] Zivan, R., Okamoto, S., Peled, H. 2014. Explorative anytime

local search for distributed constraint optimization. Artificial

Intelligence, 212, 1-26.

[8] Modi, P. J., Shen, W.-M., M. Tambe, and M. Yokoo. 2005.

Adopt: Asynchronous distributed constraint optimization

with quality guarantees. Artificial Intelligence, 161(1):149-

180.

[9] Petcu, A., Faltings, B. 2005. A scalable method for

multiagent constraint optimization. In: Proceedings of the

International Joint Conference on Artificial Intelligence

(IJCAI), pp. 266–271.

[10] Gershman, A., Meisels, A., Zivan, R. 2009. Asynchronous

Forward-Bounding for distributed COPs, Journal of

Artificial Intelligence Research, 34, 61–88.

[11] Hirayama, K., Yokoo, M. 1997. Distributed partial constraint

satisfaction problem. In: Proceedings of the International

Conference on Principles and Practice of Constraint

Programming (CP), pp. 222–236.

[12] Mailler, R., Lesser, V. 2004. Solving distributed constraint

optimization problems using cooperative mediation. In:

Proceedings of the International Conference on Autonomous

Agents and Multiagent Systems (AAMAS), pp, 438-445.

[13] Fioretto, F., Pontelli, E., Yeoh, W. 2016. Distributed

Constraint Optimization Problems and Applications: A

Survey. arXiv preprint arXiv:1602.06347.

[14] Farinelli, A., Rogers, A., Petcu, A., Jennings, N. 2008.

Decentralised coordination of low-power embedded devices

using the Max-Sum algorithm. In: Proceedings of the

International Conference on Autonomous Agents and Multi-

agent Systems (AAMAS), pp. 639–646.

[15] Rogers, A., Farinelli, A., Stranders, R., Jennings, N. 2011.

Bounded approximate decentralised coordination via the

max-sum algorithm. Artificial Intelligence 175 (2), 730–759.

[16] Rollon, E., Larrosa, J. 2012. Improved Bounded Max-Sum

for distributed constraint optimization. In: Proceedings of the

International Conference on Principles and Practice of Con-

straint Programming (CP), pp. 624–632.

[17] Ottens, B., Dimitrakakis, C., Faltings, B. 2012. DUCT: An

upper confidence bound approach to distributed constraint

optimization problems. In: Proceedings of the National

Conference on Artificial Intelligence. (Vol. 1, No. EPFL-

CONF-197504, pp. 528-534).

[18] Nguyen, D. T., Yeoh, W., Lau, H. C. 2013. Distributed

Gibbs: A memory-bounded sampling-based DCOP algorithm.

In: Proceedings of the International Conference on

Autonomous Agents and Multi-agent Systems (AAMAS), pp.

167-174.

[19] Zhang, W., Wang, G., Xing, Z., Wittenberg, L. 2005.

Distributed stochastic search and distributed breakout:

Properties, comparison and applications to constraint

optimization problems in sensor networks. Artificial

Intelligence, 161 (1–2) 55–87.

[20] Hirayama, K., Yokoo, M. 2005. The distributed breakout

algorithms. Artificial Intelligence, 161(1), 89-115.

[21] Maheswaran, R., Pearce, J., Tambe, M. 2004. Distributed

algorithms for DCOP: A graphical game-based approach. In:

Proceedings of the International Conference on Parallel and

Distributed Computing Systems (PDCS), pp. 432–439.

[22] Arshad, M., Silaghi, M. C. 2004. Distributed simulated

annealing. In: Distributed Constraint Problem Solving and

Reasoning in Multi-Agent Systems, 112.

[23] Pearce, J., Tambe, M. 2007. Quality guarantees on k-optimal

solutions for distributed constraint optimization problems. In:

Proceedings of the International Joint Conference on

Artificial Intelligence (IJCAI), pp. 1446–1451.

[24] Vinyals, M., Shieh, E., Cerquides, J., Rodriguez-Aguilar, J.,

Yin, Z., Tambe, M., Bowring, E. 2011. Quality guarantees

for region optimal DCOP algorithms. In: Proceedings of the

International Conference on Autonomous Agents and Multi-

agent Systems (AAMAS), pp. 133–140.

[25] Leite, A. R., Enembreck, F., Barthès, J. P. A. 2014.

Distributed constraint optimization problems: Review and

Perspectives. Expert Systems with Applications, 41(11),

5139-5157.

[26] Katagishi, H, Pearce, J. P. 2007. KOPT: Distributed DCOP

Algorithm for Arbitrary K-optima with Monotonically

Increasing Utility. DCR-07.

[27] Okamoto, S., Zivan, R., Nahon, A., et al. 2016. Distributed

Breakout: Beyond Satisfaction. In: Proceedings of the

International Joint Conference on Artificial Intelligence

(IJCAI), 447-453.

[28] Barabáasi, A.-L., Albert, R. 1999. Emergence of scaling in

random networks. Science, 286(5439):509-512.

194

