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ABSTRACT 

Local search algorithms are widely adopted in solving large-scale 

Distributed Constraint Optimization Problems (DCOPs). However, 

since each agent always makes its value decision based on the 

values of its neighbors in local search, those algorithms usually 

suffer from local premature convergence. More concretely, an 

agent cannot make a wise decision with poor values of its 

neighbors since its decision space is bound up with those poor 

values. In this paper, we propose a Partial Decision Scheme (PDS) 

to relax the decision space of an agent by ignoring the value of its 

neighbor which has the bad impact on its local benefits. The PDS 

comprises two partial decision processes: trigger partial decision 

and recursive partial decision. The former is iteratively performed 

by agents who cannot enhance their local benefits unilaterally to 

break out of potential local optima. The latter is recursively 

performed by neglected agents to improve global benefits. Besides, 

the trigger conditions along with a self-adaptive probability are 

introduced to control the use of PDS. The PDS can be easily 

applied to any local search algorithm to overcome its local 

premature convergence with a small additional overhead. In our 

theoretical analysis, we prove the feasibility and convergence of 

PDS. Moreover, the experimental results also demonstrate the 

superiority of the use of PDS in the typical local search algorithms 

over state-of-the-art local search algorithms. 

Author Keywords: Multi-agent System; Distributed 

Constraint Optimization Problem; Incomplete Algorithm; Local 

Search Algorithm; Partial Decision 

1. INTRODUCTION 
With1the advent of distributed artificial intelligence, multi-agent 

systems (MAS) [1] have become a popular way to model the 

complex interactions and coordination required to solve 

distributed problems. Distributed Constraint Optimization 

Problems (DCOPs) are a fundamental framework for modeling 

multi-agent coordination problems, widely deployed in real 

applications such as task scheduling [2,3], resource allocation [4], 

sensor networks [5,6], etc. A DCOP consists of a set of agents, 

each holding one or more variables. Each variable has a domain 

                                                                 

* corresponding author. 

 

 

 

 

 

of possible value assignments. Constraints among variables  

assign costs to combinations of value assignments [7]. The agents 

must coordinate their decisions of value assignments so that the 

sum of all the constraints is optimized. Algorithms to solve 

DCOPs can be classified as being either complete [8-12] or 

incomplete, based on whether they can find the optimal solution 

or they get suboptimal solutions with small execution time. 

However, since DCOPs are NP-hard [7,8], complete algorithms 

incur exponential communication or computation with the 

increase of scale and complexity of problems, which limits their 

use in many real applications. Incomplete algorithms which 

require very little local computation and communication to find 

suboptimal solutions can be well applied to large-scale practical 

distributed applications. Therefore, there has been growing 

interest in the last few years in incomplete DCOP algorithms. 

Incomplete algorithms generally include the following three 

categories [13]: local search algorithms, inference-based 

algorithms and sampling-based algorithms. Inference-based 

incomplete algorithms like Max-Sum [14] and its variants [15,16] 

allow agents to exploit the structure of a constraint graph to 

aggregate rewards from their neighbors but are more appropriate 

to acyclic DCOP graphs. Sampling-based incomplete algorithms 

like DUCT [17] and D-Gibbs [18] sample the search space to 

approximate a function as a product of statistical inference [13].  

Local search algorithms are the most popular incomplete 

methods for DCOPs, where each agent optimizes based on its 

local constraints and the values received from all its neighbors, 

such as DSA [19], DBA [19,20] and MGM [21]. However, Local 

search algorithms are prone to converge to local optima. DSAN 

[22] tries to improve DSA by sacrificing individual benefits 

restricted by the neighbor values. But the algorithm is more 

suitable for Distributed Constraint Satisfaction Problems (DCSPs). 

K-optimality [23,24] was proposed to improve the solution of 

local convergence by coordinating the decision of all agents 

within the K-size coalition, such as MGM-2 [21], MGM-3 [25] 

and KOPT [26]. However, one of the difficulties in K-optimality 

algorithms involves the definition of K. Moreover, with the 

increase of K, these algorithms require greater computational 

effort to find a K-optimal solution [25]. Recently, an anytime 

local search (ALS) framework with some exploration heuristics [7] 

are presented to enhance local search algorithms. For example, 

DSA-PPIRA uses a periodic increase in the level of exploration 

and DSA-SDP employs an explorative probability with regard to 

the potential improvement. Besides, random restart was 

introduced into the ALS framework as an algorithm-independent 

heuristic to facilitate exploration in incomplete DCOP algorithms. 

By analyzing the local search process, we find that the decision 

space of an agent is partitioned in terms of the values of its 

neighbors since its value decision heavily relies on the values of 

its neighbors. If always receiving the same values from its 
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neighbors, an agent will get into the same decision partitions and 

have no opportunity to search other promising partitions. That 

will lead to local premature convergence. The paper presents a 

partial decision scheme (PDS) to enable an agent to search the 

promising decision partitions by ignoring some bad value of its 

neighbor to enhance its local benefits, and coordinate the decision 

of its neglected neighbor to improve global benefits. The PDS 

breaks the assignment dependence on the neighbor values and 

help local search to escape from local optima. 

The paper is organized as follows. In Section 2, we present the 

DCOP definition and the local search framework. Section 3 

illustrates the details of our proposed scheme (PDS). Section 4 

proves the feasibility and convergence of PDS. In Section 5, an 

experimental study is presented to evaluate PDS when combined 

with the typical local search algorithms in comparison with 

existing local search algorithms. Finally, Section 6 concludes this 

paper. 

2. Background 

2.1 Distributed Constraint Optimization Pro-

blems 
A DCOP can be represented by a tuple , , ,A X D C  such that: 

 1 2, , , mA a a a  is a set of agents;  1 2, , , nX x x x   is a set of 

variables, where each variable is assigned to an agent; 

 1 2, , , nD D D D   is a set of finite and discrete domains,  where 

Di is the domain of variable xi;  1 2, ,..., kC c c c is a set of 

constraints, where each constraint 
1

:
qi i ic D D  + specifies 

a non-negative cost for every possible value combination of a set 

of variables [7,8].  

Given this, the goal for the agents is to find the joint variable 

assignment X* such that a given global objective function is 

minimized. Generally, the objective function is described as the 

sum over C.  

To facilitate understanding, this paper assumes that each agent 

has a single variable and constraints are binary relations. Here, the 

term ‘agent’ and ‘variable’ can be used interchangeably. A binary 

constraint is a constraint involving exactly two variables defined 

as :ij i jc D D +. The joint variable assignment X* is obtained 

as follows: 

,

      c

* arg min ( , )
i i j j

ij

ij i i j j

v D v D

C

X c x v x v
 



              (1) 

     

   (a) constraint graph       (b) constraint matrices 

Figure 1. A DCOP instance 

It is common that a DCOP problem is visualized as a constraint 

graph where the nodes are the agents and the edges are the 

constraints. Figure 1 shows an example of a DCOP problem 

whose constraint graph and constraint matrices are shown in 

Figure 1(a) and Figure 1(b), respectively. The DCOP instance 

includes 4 variables, each of which takes a value in {1, 2}, and the 

cells of the constraint matrices contain the costs of the assignment 

in Figure 1(b). 

2.2 Local Search Framework for DCOPs 
The general design of local search algorithms for DCOPs is 

synchronous. In each round of a basic local search framework, an 

agent sends its value to all its neighbors in the constraint graph 

and receives the values of its neighbors. Then, the agent will 

select a value in terms of the values of its neighbors and decide 

whether to replace its value according to a replacement strategy. 

The main difference among local search algorithms is replacement 

strategy. For example, agents in DSA stochastically replaces their 

value every round if the replacements can reduce their local costs 

while only agents with maximal gains among their neighbors can 

replace their values in MGM. Here, we only present one algorithm 

that applies to this general framework, the Distributed Stochastic 

Algorithm (DSA).  

Algorithm 1:  Distributed Stochastic Algorithm (DSA) 

For each agent xi executes: 

1.  value ← Choose_Random_Value( ) 

2.  send value to neighbors 

3.  while (no termination condition is met) 

4.    collect neighbors’ value 

5.   select a new value which reduces the local cost most 

6.   Δ ← the number of the cost reduced by the new value 

7.   if (Δ > 0 and random( ) < p) 

8.    assign the new value 

9.    send value to neighbors 

Figure 2. A framework of DSA 

The basic idea of the DSA algorithm is simple. A sketch of 

DSA is presented in Figure 2. An agent xi starts with an initial 

process in which xi assigns a random value and sends the value to 

all its neighbors (line 1-2). Then, xi performs a sequence of rounds 

until the termination condition is met. In each round (line 4-9), xi 

collects the assignments of its neighbors and selects a new value 

to reduce the local cost most. Then, it decides, often stochastically, 

to keep the current value or change to the new one, if Δ > 0 (see 

[19] for details on the possible strategies). In this paper, we call 

the process in each round “local search”. 

3. Partial Decision Scheme 

3.1 Motivation 
Let us take Figure 1 as an example to illustrate the matter of local 

convergence and the idea of the proposed scheme when DSA is 

carried out. Assume that all agents assign as 1 after many rounds 

and send their value 1 to their neighbors in the next round. x1 will 

receive x2=1 and x3=1, and try to select a new value to reduce the 

current local cost (line 4-6) in terms of its decision partitions 

pertaining to x2=1 and x3=1 (i.e., the white columns of the 

constraint matrices of x1 shown in Figure 3). In other words, x1 

has no chance to search other partitions (i.e., the gray columns 

shown in Figure 3). x1 will not change its value (line 7 will be 

false) since its value 1 results in the minimal local cost 5 based on 

the decision partition.   

 However, it can be observed from the constraint matrices of x1 

that the best value of x1 is 2 with the minimal local cost 3 if x2 and 

x1 

x2 

x4 x3 
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x3 select 2 and 1, respectively. Unfortunately, x1 will not change 

its value unless x2 and x3 change their values. Similarly, x2, x3 and 

x4 will not change their values upon receiving 1 from their 

neighbors according to the constraint matrices in Figure 1(b). At 

this point, DSA converges to a local minimum. 

x2  

x1 
1 2  

x3  

x1 
1 2 

1 4 3  1 1 3 

2 5 1  2 2 4 

Figure 3. The decision partition of x1 with x2=1 and x3=1 

x2  

x1 
1 2  

x3  

x1 
1 2 

1 4 3  1 1 3 

2 5 1  2 2 4 

Figure 4. The decision partition of x1 after ignoring x2=1 

We hope to escape from a local minimum by breaking the 

assignment dependences among the neighbors. Our idea is to 

enable an agent to search the promising decision partitions by 

ignoring some bad value of its neighbor so as to enhance its local 

benefits. For example, x1 can search more decision partitions and 

get the min cost 3 when ignoring x2=1, shown in Figure 4. 

However, to achieve its improvement, an agent who neglects its 

neighbor must provide the suggested value and its gain to the 

neglected neighbor. The neglected neighbor will decide to accept 

or refuse the suggestion based on its local benefits and the 

received gain to ensure the improvement of global benefits. In this 

example, x1 can get the local cost 3 by ignoring x2=1 or 9 by 

ignoring x3=1. Therefore, x1 will ignore x2=1 and change its own 

value to 2 under the assumption that x2=2. Meanwhile, it will 

inform the suggestion (x2=2 and gain=2) along with its new value 

to x2. Based on its constraint matrices and the received gain, x2 

will get the accumulated gain by accepting x2=2 and ignoring x4=1. 

So, x2 will change its value to 2 and inform the suggestion (x4=2 

and gain=2) along with its new value to x4. Eventually, x1, x2, x3 

and x4 take 2, 2, 1 and 2, respectively, which is the best solution 

to the example. On the basis of the above procedure, we propose a 

partial decision scheme (PDS). 

3.2 Framework of Partial Decision Scheme 
The PDS includes two partial decision processes, trigger partial 

decision and recursive partial decision. It can be easily applied to 

any local search algorithm (the pseudocode is shown in Figure 5). 

Trigger conditions. As shown in the example of Subsection 3.1, 

partial decision should be performed when an agent converges to 

a local minimum. In other words, only if an agent cannot improve 

its state by performing the original local search scheme, partial 

decision should be triggered; otherwise, the original local search 

might be broken and cannot come into play when introducing 

partial decision. However, it is hard for an agent to identify 

whether the current local search process has gotten stuck in a true 

local minimum due to the lack of global information. Therefore, 

referring to quasi-local minimum (QLM) in [27], we introduce 

potential-local minimum (PLM) and a self-adaptive partial 

decision probability (PDP) to control the use of PDS. 

 

Algorithm 2: PDS for a local search algorithm 

For each agent xi executes: 

10. initialize Local Search Algorithm  

11.  while (no termination condition is met) 

12.  if receiving suggestion_message{v*s，gs} 

13.    Dispose_suggestion_message(v*s，gs)  

14.  calculate probability PDPi 

15.  create a random number ri (0< ri <1) 

16.  if  xi is in a PLM and ri < PDPi 

17.   Trigger_partial_decision( ) 

18.   else 

19.  perform Local Search  

Trigger_partial_decision( ) 

20. select a neighbor xI randomly 

21.  calculate value v*i and v*I by formula (8) and (9) 

22.  calculate the min local cost c*i by formula (10) 

23.  gi ← ci – c*i 

24.  if (gi > 0) 

25.  assign value v*i  

26.  send suggestion_message{ v*I，gi } to xI  

Dispose_suggestion_message(v*s，gs) 

27.  v*i ← v*s 

28.  calculate the union gain gu by formula (12) 

29.  if (gu > 0) 

30.   assign value v*i  

31.   go to line 11 

32.  else 

33.  Recursive_partial_decision( ) 

Recursive_partial_decision( ) 

34. find xI by formula (13) 

35.  calculate value vI* by formula (14) 

36  calculate gi by formula (15) 

37. if (gi > 0) 

38.   assign value v*i  

39.   send suggestion_message{v*I，gi} to xI  

40.   go to line 11 

Figure 5. A PDS-based local search Algorithm executed by xi 

Definition 1: An agent xi is in a potential-local minimum (PLM) if 

xi cannot reduce its cost unilaterally by the original local search 

scheme in terms of the received values from all its neighbors. 

Here, PLM describes a state which is likely to be or evolve into 

a true local minimum. It plays the same role as QLM. However, 

PLM is a weaker condition than QLM since an agent detects a 

PLM only using its own current information rather than 

information about its neighbors. Thus, PLM is easier to be 

detected by an agent, which means the tendency of local minima 

can be perceived earlier. We also tested the effect of PLM and 

QLM on our scheme and found that the algorithms with PLM 

performed slightly better than the ones with QLM in terms of 

solution quality in the experiment. 

When an agent detects that it is in a PLM, it triggers a partial 

decision with a partial decision probability (PDP) (line 16-17). 

Here, the PDP is formulated in terms of the quality of the current 

local solution and the rounds. In order to evaluate the current 

solution for xi, a local cost level Li is defined as follows: 

min
max min

max min

max min

,

0 ,

i

i

c c
c c

c cL

c c




 
 

       (2) 
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( , ), ,
i

i ij i i j j i i j j
j N

c c x v x v v D v D


           (3) 

 min ' '
min ' , arg min ' , '

i i j j
i

ij i i j ij i i j j
v D v D

j N

c c x v x c x v x v
 



   
  

   

      

  

(4)

 

 max
' '

max ' , arg max ' , '
i i j j

i

ij i i j ij i i j j
v D v D

j N

c c x v x c x v x v
 



   
  

   

      

  

(5) 

 Here, vi and vj are the current value of xi and its neighbor xj, 

respectively. ci is the local cost of the current solution for xi. cmin 

and cmax are the lower and upper bounds of the local cost of xi, 

respectively. Ni is an index set of all neighbors of xi. It can be seen 

from formula (2) that the greater the Li, the worse the current local 

solution. Additionally, xi will record the minimal Li computed so 

far. To accommodate the search process, a PDP for xi is defined 

as the following two forms: 

_ _

_
i i

M round C round
PDP L

M round


         (6) 

_ _

_
i i

M round C round
PDP L

M round


         (7) 

 Here, C_round and M_round represent the current and max 

rounds, respectively. Max rounds are the maximal synchronic 

iterations which are usually used as a termination condition of the 

local search. Initially, PDPi is calculated according to formula (6).  

Once the optimal Li retains unchanged for T rounds, PDPi is 

calculated according to formula (7). In the paper, T= M_round /10.  

It can be inferred from formula (6) and (7) that xi with greater Li 

has a higher probability to trigger a partial decision and the 

influence of PDS will gradually wane with the increase of the 

rounds. 

Trigger Partial Decision initiates partial decision and will be 

performed once the trigger conditions are met. When xi meets 

PLM and PDPi, it will call Trigger_partial_decision( ) (Line 20-

26). Firstly, xi randomly selects one of its neighbors, xI (Line 20). 

Then, xi calculates the new value v*i, v*I and the minimal local 

cost c*i by formula (8), (9) and (10), respectively (line 21-22). v*i 

and v*I are the values of xi and xI corresponding to c*i without 

regard to the received value from xI, respectively. vk is the 

received value from a neighbor xk. 

I' '
* arg min ( ' , ) min ( ' , ' )

i i I I
i

i i i i ii I Iik k kv D v D
k N
k I

v c x v x v c x v x v
 




 
 
 
 
 

     
 

 

(8) 

I I'
* argmin ( * , ' )i iI iI I I

v D
v c x v x v


  

       

(9) 

* ( * , ) ( * , * )
i

i i i i iiI I Iik k k
k N
k I

c c x v x v c x v x v



     
   

(10) 

gi=ci-c*i

          

(11) 

 Then, xi calculates its gain gi (line 23) by formula (11) and 

decides whether to change its current value to v*i by the following 

process named ‘decision and replacement’ (line 24-26): If gi is no 

greater than 0, which means xi cannot improve its state when 

ignoring xI, xi will retain its current value and continue to do the 

next round of local search; otherwise, xi will change to v*i and 

send a suggestion message to its neighbor xI. The suggestion 

message includes the suggested value v*I and the gain gi. 

Dispose Suggestion Message is performed by the neglected agent 

to decide whether to accept the suggested value or to further 

perform partial decision. Upon receiving a suggestion message, xi 

will execute Dispose_suggestion_message(v*s, gs). Here, gs and 

v*s is the gain and the suggested value in the suggestion message 

sent by xs, respectively. xi firstly records v*s as v*i and then 

calculates its union gain gu by formula (12) (line 27-28): 

,

( ( , ) ( * , ))
i

u s ij i i j j ij i i j j
j N j s

g g c x v x v c x v x v
 

          (12) 

 If gu is no less than 0, xi will accept the suggestion by changing 

its current value to v*i and skip the current round of local search 

to avoid the conflict between local search and partial decision 

(line 29-31); otherwise, xi will perform recursive partial decision 

(line 32-33). 

Recursive Partial Decision is performed by the neglected agent 

to improve global benefits by ignoring one of its neighbors except 

its suggester. Firstly, xi searches its decision space by ignoring the 

value of each neighbor except xs to find a neighbor xI which could 

minimize xi’s cost if it changed its value vI according to formula 

(13) (line 34). Then, xi computes the new value v*I for xI by 

formula (14) and the gain gi of all its constraints except cis by 

formula (15) (line 35-36). Here, cis has been considered in gs in 

the suggestion message. 

'

,

argmin ( * , ) min ( * , ' )
j j

i i

i i ij i i j jik k k v Dj N k N
j s k j k s

I c x v x v c x v x v
 

  

 
 
 
 
 

     

 

 

(13) 

I I'

* argmin ( * , ' )i iI iI I I
v D

v c x v x v


  

      

(14) 

,

( , )

( * , ) ( * , * )

i

i

i ij i i j j
j N
j s

ij i i j j i iiI I I
j N
j s j I

g c x v x v

c x v x v c x v x v





 

 
 
 
 
 

  

     



  

 (15) 

 Next, xi performs the ‘decision and replacement’ process 

shown by Trigger Partial Decision. This may recursively trigger 

new recursive partial decision for an agent xi receiving the 

suggestion message until xi meets gu > 0 or 0ig   (line 37-40). 

 It is worth noting that we use the different strategies to select a 

neglected neighbor, xI. In trigger partial decision, xI is randomly 

selected since the random selection requires only little 

computation and can avoid selecting the same neighbor repeatedly 

so as to enhance the diversity which is an important concern in 

trigger partial decision. In recursive partial decision, xI is 

optimally selected since the best choice can guarantee the 

improvement of global benefit. 

  Additionally, the PDS requires a small overhead. Since the 

calculation for Li requires O(1) time, and cmin and cmax can be 

computed in preprocessing, the overhead mainly concentrate in 

two parts: the extra message number and the time and space 

complexity caused by trigger partial decision and recursive partial 

decision. Actually, the number of extra messages equals to the 
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number of agents performing partial decision. And, each agent xi 

requires O( ( ))
ij Ni i jD N max D  time and  O i iD N space in 

trigger partial decision, and * )O(
ii j N jN max D

time and )O( iN  

space in recursive partial decision, which is close to the 

complexity of local search. Moreover, with the trigger conditions, 

there is only a small set of agents executing partial decision. Thus, 

the overall overhead is small.  

4. Theoretical Analysis 
We consider the implementation of the two partial decisions. 

Trigger partial decision is performed only if an agent meets PLM 

and PDP. Once an agent 
0i

x  performs trigger partial decision, 

there will be two cases. 

case 1. Recursive partial decision is recursively performed for 

m times (m  0) until the neglected agent
1mi

x


accepts the 

suggestion from
mi

x , i.e., gu > 0.  

case 2. Recursive partial decision is recursively performed for 

m times (m 0) until the neglected agent 
1mi

x


cannot improve its 

state by means of recursive partial decision, i.e., 
1

0
mi

g

 .  

To illustrate the effects of PDS, we assume that the original 

local search has gotten stuck in a local minimum before using 

PDS, and will not increase the individual cost when using PDS.  

Proposition 1 When an agent xi performs trigger partial decision, 

the global cost is strictly decreasing in case 1. 

proof. We begin by introducing some notations. c(n)
i , c(n)

ij , C(n) 

denote the local cost of xi , the constraint cost between xi and xj, 

the global cost, respectively, at the end of the n-th round. Assume 

that partial decision starts with
0i

x ignoring
1i

x in the n-th round, 

then
1i

x receives the suggestion and ignores
2i

x , and recursive 

partial decision is recursively performed for m times (m  0) 

until
mi

x ignores 
1mi

x


in the n+m-th round, and 
1mi

x


accepts the 

suggestion from 
mi

x in the n+m+1-th round. Accordingly, C(n-1) 

and C(n+m+1) are the global costs before and after the partial 

decision process, respectively. We consider C(n-1) - C(n+m+1). 
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Equation (16) partitions the global cost into m+3 parts 

corresponding to the order of agents performing partial decision. 

In inequation (17), we transforms the summation by c(k+1)
i  c(k)

i 

which is due to the fact that the agents can use local search to 

decrease its cost. In equation (18), we modify the summation 

according to the associative law of addition. In inequation (19), 

we transform the summation by equation (11), (15) and the fact 

that the gain obtained by an agent xi between two rounds will be 

no less than gi by means of the original local search. The final 

equation comes by equation (12). Here, 
ki

g (0  k  m-1) and gu 

are greater than 0 because each neglected agent xi assigns the 

suggested value v*i. Thus, C(n+m+1) is always less than C(n-1) in case 

1. □ 

Proposition 2 When an agent xi performs trigger partial decision, 

the local search with PDS is equivalent to its original with local 

restart in case 2. 

proof. Assume that partial decision starts by
0i

x ignoring 
1i

x in the 

n-th round, then
1i

x receives the suggestion and ignores
2i

x , and 

recursive partial decision is recursively performed for m times 

(m  0) until
+1mi

x cannot improve its state by means of partial 

decision (i.e., 
+1mi

g  0) in the n+m+1-th round. Since
+1mi

x does 

not change its value, 
mi

x is the last agent assigning the suggested 

value. We consider C(n-1) - C(n+m). 
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Inequation (21), (22) and equation (23) come according to (18), 

(19) and (20). When m = 0, 
0i

x is the only agent changing its 

value after meeting PLM, so 
0 0

( 1) ( )
-

n n
i ic c is less than 0. However, 

when 1m , 
ki

g (0  km-1) is greater than 0 but gu is less than 0 

according to Disposing suggestion message (line 27-33). 

Consequently, whether C(n+m) is less than C(n-1) is unclear.  
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 At this point, 
mi

x has ignored
1mi

x


but
1mi

x


does not assign the 

suggested value. Thus, the current value of
mi

x is not the best 

response in terms of the values of its neighbors. So, in the next 

round,
mi

x will perform the original local search to change the 

current value, which could influence its neighbors, especially
1mi

x


. 

Similarly, when
mi

x changes its value, 
1mi

x


will also perform the 

original local search to change its value if 
1mi

x


holds
1

*
mi

v


from 

equation (14). The above change will happen recursively in more 

agents, which is equivalent to a local search with local restart. □ 

Proposition 3. The convergence of PDS-based algorithms will 

eventually depend on their originals.  

proof. The convergence of PDS-based algorithms depends on two 

factors, the convergence of their original algorithms and the effect 

of PDS. It can be seen from formula (6) and (7) that PDP will 

gradually approach to zero as C_round grows. With the decrease 

of PDP, trigger partial decision is less likely to be executed (line 

16). That is, the effect of PDS will be gradually decreased during 

the optimization process. Accordingly, more and more agents will 

perform the original local search (Line 18-19). Finally, PDS-

based algorithms will perform just like their originals. □ 

5. Experimental Analysis 
In order to demonstrate its effect on distributed local search, the 

partial decision scheme (PDS) is applied to DSA (type-C and 

p=0.4), DSAN, MGM and MGM2 named as PDS-DSA, PDS-

DSAN, PDS-MGM and PDS-MGM2, respectively. In our 

experiments, we will compare these PDS-based algorithms with 

their originals and DSA-SDP on three different types of problems: 

random DCOPs, scale-free problems and graph-coloring problems. 

Here, DSA-SDP is reported the best ALS-DSA with exploration 

heuristics in [7]. We average the experimental results over 50 

independently generated problems, each of which is solved by 

each algorithm 30 times. The compared algorithms except DSA-

SDP are all implemented without the ALS framework.  

We consider random DCOPs with n = 120 agents, k = 10 

values in each domain, costs chosen from the range   1,  2,...,  100 , 

and constraint density p = 0.1 (sparse problems) or p=0.6 (dense 

problems) [7]. For scale-free problems, we generate instances by 

Barabáasi-Albert model [28] where an initial set of m0=20 

connected agents is used and in each iteration a new agent is 

connected to m1=3 other agents for sparse problems or m1=10 

other agents for dense problems with a probability proportional to 

the number of links that the existing agents already have. Besides, 

the other parameter settings in scale-free networks are the same as 

ones in random DCOPs. For graph-coloring problems, we use 

n=120 agents, the number of colors=3 and the density parameter 

p=0.05 [7]. As in standard graph coloring problems, we set the 

cost of each violated constraint (two adjacent variables with the 

same color) to one. These problems are known to be hard Max-

CSP problems, i.e., beyond the phase transition between solvable 

and non-solvable problems [7].  

 

 

Figure 6. The cost in each step of all 9 algorithms when solving 

Random DCOPs (sparse problems) 

 

Figure 7. The cost in each step of all 9 algorithms when solving 

Random DCOPs (dense problems) 

Figure 6 and Figure 7 show the comparison with PDS-DSA, 

PDS-DSAN, PDS-MGM, PDS-MGM-2, their originals and DSA-

SDP on random DCOPs with p = 0.1 and p=0.6, respectively. 

It can be seen that the PDS-based algorithms have an obvious 

advantage over their originals and DSA-SDP in sparse problems. 

The PDS-based algorithms are superior to DSA-SDP by about 

2.2%~4.0%. And the improvement of PDS-DSA over DSA is 

about 7.8%. PDS-DSAN improves DSAN by about 7.8%. And 

the improvement of PDS-MGM and PDS-MGM2 over their 

originals are about 11.3% and 4.0%, respectively. However, the 

improvements of the PDS-based algorithms over their originals 

are not obvious and only about 1.2%~4.5% in dense problems. 

Moreover, PDS-MGM2 and PDS-DSA is slightly inferior to 

DSA-SDP. In addition, all the PDS-based algorithms have 

advantages over their originals at statistically significant level of 

p-value < 2.5×10-10 in sparse problem and p-value < 1.9×10-8 in 

dense random DCOPs, respectively.  

 Besides, it can be found that the PDS-based algorithms have 

the similar curves, especially for dense problems. The reason 

might be that the PDS leads the local search process since it has a 

better search ability than the original local search schemes. 

Moreover, we find that PDS-MGM outperforms PDS-MGM2 

while MGM2 is better than MGM. The reason is that PDS-MGM 

has more chances to perform partial decision in the limited steps 

since MGM2 and MGM requires 5 and 2 steps per round, 

respectively. Here, the step refers to the communication cycle 

between agents. 
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Figure 8. The cost in each step of all 9 algorithms when solving 

Scale-Free problems (sparse problems) 

 

Figure 9. The cost in each step of all 9 algorithms when solving 

Scale-Free problems (dense problems) 

 Figure 8 and Figure 9 show the comparison with all nine 

algorithms for solving sparse and dense scale-free problems, 

respectively. Similar to random DCOPs, the PDS-based 

algorithms have great superiority over their originals in sparse 

problems at statistically significant level of p-value < 9.0×10-22. 

The improvement of PDS-DSA over DSA is 14.7%. And PDS-

DSAN improves the DSAN by about 12.8%. PDS-MGM and 

PDS-MGM2 also outperform their originals by 17.4% and 7.9%, 

respectively. Besides, it can be seen that the PDS-based 

algorithms are superior to DSA-SDP by about 8.3%~9.2%. 

Moreover, the PDS-based algorithms have still advantages over 

their originals by about 3.0%~7.4% in dense problems at 

statistically significant level of p-value < 3.3×10-9.  

 Figure 10 show the comparison with all nine algorithms for 

solving graph coloring problems. We can see that DSAN and 

PDS-DSAN exhibit more excellent performance over the others. 

And, PDS-DSAN has the similar performance with DSAN, which 

indicates the local search scheme adopted by DSAN is more 

suitable for solving DCSPs. Meanwhile, it can be observed that 

the other PDS-based algorithms have improved their originals a 

lot, especially for MGM. It illustrates that the PDS is also a good 

decision scheme for DCSPs. 

6. Conclusion and Future Work 
Each agent in the local search process needs to take account of the 

current values of all its neighbors so as to select its value, which 

would prohibit it from searching some promising solutions. This  

 

Figure 10. The cost in each step of all 9 algorithms when 

solving graph coloring problems  

paper presents a Partial Decision Scheme to break the assignment 

dependence. The PDS comprises trigger partial decision and 

recursive partial decision processes. The former is iteratively 

performed by agents who meet the trigger conditions, where they 

neglect some bad values of their neighbors to enhance their local 

benefits and provide the suggested values for the neglected 

neighbors. The latter is recursively performed by neglected agents, 

where they ignore the values of their neighbors except their 

suggesters to improve global benefits. The partial decision scheme 

can be applied to any local search algorithm and the experimental 

results verify its advantage on benchmark problems.  

In the future, we will probe into new solution evaluation and 

control mechanism to enhance the convergence speed and 

accuracy of PDS-based local search algorithms. In addition, we 

will also try to extend the partial decision scheme by ignoring the 

values of multiple neighbors. 
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