
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2021) 35:24
https://doi.org/10.1007/s10458-021-09511-z

1 3

Utility distribution matters: enabling fast belief propagation
for multi‑agent optimization with dense local utility function

Yanchen Deng1 · Bo An1

Accepted: 25 May 2021
© Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Belief propagation algorithms including Max-sum and its variants are important methods
for multi-agent optimization. However, they face a significant scalability challenge as the
computational overhead grows exponentially with respect to the arity of each utility func-
tion. To date, a number of acceleration algorithms for belief propagation algorithms were
proposed. These algorithms maintain a lower bound on total utility and employ either a
domain pruning technique or branch and bound to reduce the search space. However, these
algorithms still suffer from low-quality bounds and the inability of filtering out suboptimal
tied entries. In this paper, we first show that these issues are exacerbated and can con-
siderably degenerate the performance of the state-of-the-art methods when dealing with
the problems with dense utility functions, which widely exist in many real-world domains.
Built on this observation, we then develop several novel acceleration algorithms that allevi-
ate the effect of densely distributed local utility values from the perspectives of both bound
quality and search space organization. Specifically, we build a search tree for each distinct
local utility value to enable efficient branch and bound on tied entries and tighten a running
lower bound to perform dynamic domain pruning. That is, we integrate both search and
pruning to iteratively reduce the search space. Besides, we propose a discretization mecha-
nism to offer a tradeoff between the reconstruction overhead and the pruning efficiency.
Finally, a K-depth partial tree-sorting scheme with different sorting criteria is proposed
to reduce the memory consumption. We demonstrate the superiorities of our algorithms
over the state-of-the-art acceleration algorithms from both theoretical and experimental
perspectives.

Keywords DCOP · Inference · Belief propagation · Max-sum · Domain pruning

This paper is an extension to our IJCAI paper [9]. Beside additional examples, experiments and proofs,
we also present a K-depth partial tree-sorting scheme reducing the memory consumption by limiting
the depth of search trees, which is not included in the IJCAI paper.

 * Yanchen Deng
 ycdeng@ntu.edu.sg

 Bo An
 boan@ntu.edu.sg

1 School of Computer Science and Engineering, Nanyang Technological University, Singapore,
Singapore

http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-021-09511-z&domain=pdf

 Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

 24 Page 2 of 40

1 Introduction

Distributed Constraint Optimization Problems (DCOPs) [32] are a fundamental model for
multi-agent optimization and coordination, in which agents cooperatively find assignments
to optimize a global objective. DCOPs have been successfully applied to model many real-
world problems where information and controls are inherently distributed among multiple
agents, such as distributed scheduling [15, 27], smart-grids [11] and radio frequency allo-
cation [33].

Complete algorithms for DCOPs [6, 16, 28, 32, 34, 40, 41, 49] aim to find the optimal
solution but incur exponential coordination overheads since solving DCOPs is NP-Hard. In
contrast, incomplete algorithms [19, 30, 35–37, 53] trade the solution quality for smaller
computational efforts and can scale up to large problems. Max-sum and its variants [4,
10, 43, 56] are popular incomplete algorithms built upon the Generalized Distributive Law
(GDL) [1] and have been applied to many real-world domains [10, 22, 29]. However, these
algorithms face a significant scalability challenge. In more detail, Max-sum implements
belief propagation on a factor graph [26] by optimizing the sum of local utility functions
and corresponding query messages. As a result, the computational effort grows exponen-
tially with respect to the arity of each utility function, which prohibits Max-sum from scal-
ing up to the problems with high-arity factors.

Therefore, a number of acceleration algorithms for belief propagation algorithms were
proposed to improve their scalability and can be generally divided into BnB-based and
sorting-based algorithms. BnB-based algorithms [5, 29, 46] construct an estimation for
each partial assignment and employ branch and bound to reduce the search space. Dif-
ferently, Generic Domain Pruning (GDP) [21] technique is a sorting-based approach that
performs a one-shot pruning on a completely sorted local utility list.

However, a key issue of the existing methods is the bound quality. In more detail, BnB-
based algorithms alphabetically exhaust the whole search space without using any a priori
knowledge. As a result, the algorithms may not be able to find a high-quality lower bound
promptly when utility functions are highly structured, leading to a poor acceleration perfor-
mance. On the other hand, although GDP attempts to find a more efficient bound by sort-
ing local utility values, the one-shot nature still cannot guarantee the quality of the lower
bound (cf. Sect. 4).

The issue could be amplified when solving the problem with dense utility functions.
Consider a utility function where the entries with high utility value are sparsely distrib-
uted (or, equivalently, the entries with low utility value are densely distributed). BnB-based
algorithms may need to search a considerably large proportion of search space before
finding a high-quality lower bound. Similarly, when the entries with high utility value are
densely distributed, the pruned range returned by GDP may contain many entries whose
utility value is no less than the one-shot lower bound. Even worse, GDP cannot prune at all
if the entries have the same utility value. In fact, GDP relies on a linearly structured space
(i.e., the sorted local utility list) to perform pruning and thus cannot discard the suboptimal
tied entries in advance.

Unfortunately, densely distributed utility functions are ubiquitous in real-world sce-
narios. For example, in a NetRad system [22], multiple radars coordinate their scanning
strategy to maximize the total utility of scanning weather phenomena. In such scenario, the
utility of scanning a weather phenomenon does not necessarily grow linearly with respect
to the scanning quality. Some phenomena may require high-quality observations and the
entries with low utility value are very densely distributed in the corresponding utility

Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

Page 3 of 40 24

functions. While some phenomena require less joint efforts and the corresponding utility
functions have many entries with high utility value.

Against the background, in this paper we aim to cope with dense local utility functions
from the perspectives of both bound quality and search space organization and develop
more efficient acceleration algorithms for Max-sum and its variants. Specifically, our main
contributions are listed as follows.

• We propose a Generic Dynamic Domain Pruning (GD2 P) technique to ensure the
bound quality. Instead of performing a one-shot pruning with the initial bound in GDP,
we iteratively reduce the search space by continuously tightening a running lower
bound. We further enhance GD2 P by merging the entries with the same utility value
into a search tree to enable efficient branch and bound on tied entries. Therefore, the
search space is collectively represented by a sorted array of search trees and the scheme
is referred as Search Tree-based GD2 P (ST-GD2P).

• We propose a discretization mechanism for ST-GD2 P to offer a tradeoff between the
reconstruction overhead and the domain pruning efficiency. That is, we eliminate small
search trees in ST-GD2 P by discretizing the utility range into slots according to a fixed
step size and building a search tree for each slot. In this way, we can reduce both the
preprocessing and reconstruction overheads when the utility functions are extremely
dense.

• We introduce a K-depth Partial Tree-sorting Scheme (PTS) with different sorting crite-
ria to reduce the memory consumption of ST-GD2 P. Given a utility function and a total
ordering on the involved variables, the scheme builds a sorted array of search trees to
represent the search space of the first K variables according to certain sorting criterion.
For the remaining variables, the vanilla branch and bound is carried out to exhaust the
search space. Finally, we introduce a built-in termination detection mechanism to allow
domain pruning in PTS.

• We theoretically show that the proposed algorithms are correct and both GD2 P and
ST-GD2 P outperform GDP in terms of pruning capability. Our empirical evaluations
indicate that the proposed algorithms significantly outperform the state-of-the-art in
various benchmarks.

The rest of the paper is organized as follows. We review related work in Sect. 2. Back-
grounds and preliminaries can be found in Sect. 3. We motivate our research in Sect. 4. In
Sect. 5, we detail the proposed GD2 P, ST-GD2 P and discretization mechanism. K-depth
sorting scheme is presented in Sect. 6. We present empirical evaluations in Sect. 7 and con-
clude the paper in Sect. 8.

2 Related work

Over the past decade, many algorithms for DCOPs have been proposed and can be gen-
erally classified as complete and incomplete according to whether they guarantee to find
the optimal solution. While search-based complete algorithms like SynchBB [16], ADOPT
[32], AFB [13], BnB-ADOPT [51], ConFB [34], and PT-FB [28] perform distributed back-
track search to systematically explore the whole solution space, inference-based complete
algorithms including DPOP [40], MB-DPOP [41], Action-GDL [49] and RMB-DPOP [6]
perform dynamic programming to backup utility tables. Besides, some hybrid schemes like

 Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

 24 Page 4 of 40

ADOPT-BDP [2], DJAO [24] and HS-CAI [3] attempt to combine the advantages of both
search and inference. However, due to the NP-hardness of solving a DCOP, complete algo-
rithms incur exponential coordination overheads and cannot scale up to large problems.

Local search algorithms including DSA [53] and MGM [30] are typical incomplete
algorithms, which iteratively optimize the solution via local moves. In those algorithms,
agents keep exchanging self states (i.e., assignments or gains) with their neighbors, and
determine whether to replace and how to replace their assignment based on the received
states from their neighbors. Different algorithms adopt different assignment replacement
strategies. For example, agents in DSA stochastically replace their assignment in every
iteration, while only the agents who hold the maximum gain among their neighbors can
replace their assignment in MGM. Recently, GDBA [36] adapts DBA [17], which is
designed to solve Distributed Constraint Satisfaction Problems (DisCSPs) [52], to solve
the general-valued DCOPs. To improve the quality of local convergence, KOPT [20] coor-
dinates the decisions of all agents within the K-size coalition and converges to a K-optimal
[38] state ensuring that the solution quality cannot be improved if K agents or fewer change
their assignment.

Sampling-based techniques including DUCT [37] and D-Gibbs [35] are the emerging
incomplete methods for DCOPs, which perform sequential sampling on a pseudo tree [12].
Given a context a, an agent in DUCT first constructs a confidence bound for each value k
in its domain, which is an optimistic estimation of the optimal cost for its subtree under
context a and value k, and samples the value with the lowest bound. However, the memory
requirement per agent in DUCT is exponential in the number of agents, which makes it
unsuitable for large real applications. Differently, D-Gibbs solves a DCOP by mapping it
to a Maximum Likelihood Estimation (MLE) problem and using Gibbs sampling to find a
solution, which requires a linear-space of memory. However, D-Gibbs requires all agents
to be organized into a pseudo tree which usually leads to low concurrency in large-scale
systems. Besides, D-Gibbs offers no quality guarantee before it converges, which is not
suitable for safety critical applications such as disaster response, surveillance, etc.

Max-sum [10] is an important GDL-based incomplete algorithm which performs loopy
belief propagation to accumulate utility values through the whole factor graph. Specifi-
cally, each agent in Max-sum maintains belief about the global utility for each possible
assignment, and keeps updating its belief based on the messages received from its neigh-
bors. To make a decision, an agent in Max-sum chooses the assignment with the highest
utility under the current belief. Unfortunately, Max-sum only guarantees to converge in
cycle-free problems which are very rare in realistic applications.

Bounded Max-sum [43] attempts to overcome the non-convergence of Max-sum by
removing edges from a cyclic factor graph to make it acyclic. Specifically, the algorithm
first relaxes a cyclic factor graph into a tree-structured graph by shrinking the binary
dependencies between variable nodes and function nodes which have the least impacts on
the solution quality to unary functions via a minimization operation. Then standard Max-
sum is used to solve the relaxed problem and provides a bound on the approximation of
the optimal solution. To provide a tighter approximation ratio, Improved Bounded Max-
sum (IBMS) [44] concurrently solves a minimized and a maximized relaxed problem, and
selects the best result to calculate the approximation ratio. Nonetheless, all BMS algo-
rithms introduce errors in their relaxation phase. Thus, ED-IBMS [45] attempts to alleviate
the pathology by decomposing binary dependencies into unary functions.

Different than removing edges in BMS algorithms, Max-sum_AD [56] makes a fac-
tor graph acyclic by strictly controlling the direction of message-passing. That is, instead
of sending messages to every neighbor in Max-sum, nodes in Max-sum_AD only send

Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

Page 5 of 40 24

messages to ones ordered after them. And the message-passing direction is alternated
after the algorithm converges. Further, Max-sum_ADVP [56] enhances Max-sum_AD by
implementing a value propagation mechanism to enforce the cross phase convergence and
monotonicity. However, the exploitative nature of Max-sum_ADVP restricts the solutions
that are ultimately found. Therefore, a number of non-consecutive value propagation strate-
gies were proposed in [4] to balance exploration and exploitation.

Damped Max-sum [7] provides an alternative way to increase the chances for conver-
gence of belief propagation by decreasing the effect of cyclic information propagation.
Instead of transforming factor graph or controlling message-passing direction, damped
Max-sum manipulates the content of the messages sent from function nodes to variable
nodes. That is, a message now is the weighted sum of new calculation performed in the
current iteration and calculation performed in the previous iteration. Combining with any-
time mechanism [55] or factor splitting [7], Damped Max-sum with a high damping factor
outperforms all other versions of Max-sum, as well as local search algorithms.

Despite their significance in the field of distributed constraint reasoning, Max-sum
and its variants face a huge scalability challenge. Specifically, these algorithms imple-
ment belief propagation by optimizing the sum of local utility functions and correspond-
ing query messages. As a result, the computational effort for producing a message from a
function node to a variable node grows exponentially with respect to the arity of the utility
function, which prohibits Max-sum from scaling up to high-arity factors.

Therefore, a number of acceleration algorithms for belief propagation were proposed
to improve their scalability and can be generally divided into BnB-based and sorting-
based algorithms. BnB-MS [46] and BnB-FMS [29] are typical BnB-based algorithms
which construct an estimation for each partial assignment and employ branch and bound
to reduce the search space. Nevertheless, these algorithms compute estimations by either
brute-force or domain-specific knowledge, which limits their generality. Recently, FDSP
[5] was proposed to implement generic branch and bound by using dynamic-programming
to construct domain-agnostic estimations.

On the other hand, sorting-based algorithms including G-FBP [23] and GDP [21]
require (partially) sorted local utility list to perform acceleration. Specifically, G-FBP only
sorts for top cd

n−1

2 values of the search space and presumes that the highest utility can be
found in the ranges. Here, c is a constant, d is the maximal domain size and n is the arity of
a utility function, respectively. However, the algorithm has to perform an exhaustive trav-
erse when the assumption fails. In contrast, GDP constructs a completely sorted local util-
ity list for each assignment of each variable. Then it uses the entry with the highest local
utility value to compute a one-shot lower bound to prune suboptimal entries.

Orthogonally, Tarlow et al. [48] studied the problems with Tractable Higher Order
Potentials (THOPs) and pointed out that the computational complexity of Max-sum on
these problems can be reduced to polynomial time. For example, given a binary problem
with cardinality factors where each variable can only take either 0 (off) or 1 (on) and the
value of a utility function depends solely on the number of on variables, Max-sum can be
efficiently implemented in O(n log n) per function node by using sorting and dynamic pro-
gramming. For some specific types of THOPs, the belief propagation can even be imple-
mented in linear time [14, 25, 42].

However, a major issue of THOP-based methods is the limited reprentational capability of
THOPs, which disallows the use in general problems. In fact, since the value of a cardinality
factor is determined only by the number of on variables, it fails to capture the complex utility
structures such as preferences. Besides, applying THOP-based algorithms could be laborous:
for each utility function, one needs to first identify its pattern and then design a specified

 Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

 24 Page 6 of 40

algorithm for it. Therefore, in this work, we are interested in developing general acceleration
algorithms for Max-sum.

3 Backgrounds

In this section, we review preliminaries including DCOPs, Max-sum, GDP and FDSP.

3.1 Distributed constraint optimization problems

A Distributed Constraint Optimization Problem (DCOP) [32] can be defined by a tuple
⟨A,X,D,F⟩ where A = {a1,… , ap} is the set of agents, X = {x1,… , xq} is the set of vari-
ables, D = {D1,… ,Dq} is the set of discrete domains and F = {f1,… , fm} is the set of utility
functions. Each function fj ∶ �� → ℝ≥0 specifies a utility for each possible combination of
involved variables �� ⊆ X . For the sake of simplicity, we assume that each agent controls a
variable (i.e., p = q). The objective of a DCOP is to find an assignment for each variable to
maximize the global utility. That is,

3.2 Max‑sum

Max-sum [10] is a GDL-based incomplete message-passing algorithm for DCOPs operating
on a factor graph. A factor graph [26] is a bipartite graph representation of a DCOP, which
consists of variable nodes representing variables and function nodes representing utility func-
tions in the DCOP, respectively. Figure 1 presents a factor graph consisting of 3 function
nodes and 5 variable nodes.

Starting from arbitrarily initialized messages, Max-sum implements belief propagation via
query and response messages. A query message is sent from a variable node to a neighbor-
ing function node, which is computed by summing up the latest messages received from the
neighboring function nodes except the target function node. Formally, the query message from
variable node xi ∈ �� to function node fj in iteration m is given by

where Nxi
 is the set of neighboring function nodes of xi , rm−1fk→xi

(xi) is the response message
from fk in the previous iteration and � is a normalization term to control the magnitude of

X∗ = argmax
X

∑
fj∈F

fj(��).

(1)qm
xi→fj

(xi) =
∑

fk∈Nxi
�{fj}

rm−1
fk→xi

(xi) − �,

Fig. 1 A factor graph

Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

Page 7 of 40 24

each entry in the message. A response message is sent by a function node to a neighboring
variable node, which contains the best utility value for each value in the domain of target
variable under current belief. Formally, the response message from function node fj to var-
iable node xi ∈ �� in iteration m is given by

A variable node xi makes a decision in iteration m1 by choosing the assignment with the
highest utility under the current belief. That is,

3.3 Generic domain pruning

It can be seen that the computational overhead of Eq. (2) is exponential in the arity of
utility function fj , which prohibits Max-sum from solving the problems with high-arity
factors. Generic Domain Pruning (GDP) [21] is a state-of-the-art acceleration algorithm
operating on completely sorted utility lists. In more detail, for each variable xi ∈ �� and
each value vi ∈ Di , fj sorts the space corresponding to �� ∧ {xi = vi} into SortedEntriesi

j
(vi)

according to the utility value, where each entry e ∈ SortedEntriesi
j
(vi) is an assignment to

�� such that xi takes vi . When computing the response utility for xi = vi , fj constructs a one-
shot lower bound lb according to the entry with the highest local utility value. That is,

where e0 is the first element in SortedEntriesi
j
(vi) and e0[xk] is the assignment of xk in entry

e0 . Clearly, an entry e is proven to be suboptimal if its local utility fj(e) is lower than lb,
since its total value is lower than the one produced by e0 even if the maximum query mes-
sage utility is attained. Therefore, GDP performs binary search on SortedEntriesi

j
(vi) to find

the maximum index q such that fj(eq) ≥ lb , and returns all entries between e0 and eq (both
are inclusive) as the pruned range.

Figure 2 illustrates the trace of GDP when computing response utility for x1 = F . Start-
ing with a preprocessing phase, which sorts the utility function in descending order, GDP
uses the first entry in the sorted utility list {F, T , T} to compute an initial value 10. Then the
value is shifted by subtracting the maximum message utility of each non-target variable,
resulting in the lower bound of 5. Finally, any entry with local utility value smaller than 5
is pruned and the algorithm returns {F, T , T} and {F,F,F} as the pruned range.

(2)rm
fj→xi

(xi) = max
���{xi}

⎛
⎜⎜⎝
fj(��) +

�
xk∈���{xi}

qm−1
xk→fj

(xk)

⎞
⎟⎟⎠
.

x∗
i
= argmax

vi∈Di

∑
fk∈Nxi

rm
fk→xi

(vi).

lb = fj(e0) +
∑

xk∈���{xi}

qxk→fj
(e0[xk]) − max

vk∈Dk

qxk→fj
(vk),

1 We hereafter drop the notion of m for sake of simplicity.

 Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

 24 Page 8 of 40

3.4 Function decomposing and state pruning

A prominent drawback of GDP is the prohibitively expensive sorting overhead. In fact,
for each utility function fj , sorting for a variable requires O(ndn) operations, where
n = |��| and d = maxxi∈�� |Di| . Therefore, Function Decomposing and State Pruning
(FDSP) [5] was proposed to reduce the search space by directly performing branch and
bound without sorting the utility values.

Specifically, FDSP assumes a static ordering over the involved variables of a util-
ity function, e.g., a lexicographical order. When fj is computing a response utility for
a target assignment ��,� = v where 1 ≤ i ≤ |��| , it performs backtrack search by main-
taining a partial assignment PA. Pruning happens whenever the upper bound of PA is
smaller than the known lower bound. Here, the upper bound is given by

where i is the index of the target variable, l is the index of the last assigned variable of PA
in �� and FunEstl(PA) is the most optimistic estimation on how much local utility we will
get given prefix PA. In particular, FDSP considers two types of function estimation. When
i < l , the estimation is nothing but a maximization to fj over all unassigned variables. Oth-
erwise, the estimation is enhanced by considering the assignment of the target variable ��,� .
That is,

To compute the estimations efficiently, FDSP performs dynamic programming (i.e., the so-
called “function decomposing”) to back up the maximum local utility values in preprocess-
ing phase, which incurs a much smaller overhead than GDP.

(3)ubPA =
∑

1≤k≤l,k≠i

q��,�→fj
(PA[��,�]) +

∑
l<k≤|��|,k≠i

max
vk

q��,�→fj
(vk) + FunEstl(PA),

(4)FunEstl(PA) =

⎧
⎪⎨⎪⎩

max
z={��,��l<k≤����}

fj(PA, z) i < l

max
z={��,��l<k≤����∧k≠i}

fj(PA, ��,� = v, z) i > l
.

Fig. 2 The trace of GDP

Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

Page 9 of 40 24

3.5 Search trees

Search trees [8, 31] are a powerful tool for representing search spaces. In a search tree,
each level is labelled with a variable and each node corresponds to a possible assignment
the variable can take. Therefore, a path from a root to a leaf uniquely determines a full
assignment, and enumerating all possible solutions of the search space is equivalent to per-
forming a travers of the search space. For example, Fig. 4b presents a search tree over
variables x2, x3 and x4 where x2 and x4 can take either D or U while x3 takes a value from
{R, L} . A path D − R − D corresponds to an assignment {x2 = D, x3 = R, x4 = D}.

Naturally, the search space of Eq. (2) can be represented by a search tree where each
level is assigned to a non-target variable and each node is the value the associated variable
can take. In fact, FDSP implicitly exhausts the search tree by branching on each non-target
variable and discards subtrees when the corresponding partial assignments are proven to be
suboptimal.

4 Motivation

In this section, we demonstrate that the existing acceleration algorithms could perform
poorly when solving problems with dense utility functions. Consider a part of a NetRad
system shown in Fig. 3 consisting of four radars and two weather phenomena P1,P2 . For
simplicity, assume that each radar can only scan one of two sectors (i.e., {R, L} for x1 and

Fig. 3 The NetRad system
example

(a) (b)

(c) (d)

 Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

 24 Page 10 of 40

x3 , {D,U} for x2 and x4). Phenomenon P1 requires less joint observation efforts and the util-
ity is high even if there is only one radar scanning P1 , while observing P2 is demanding and
all radars must scan simultaneously to obtain a high utility.

Figure 3b–d give the partial utility functions (w.r.t. x1 = R) and local interactions for
P1 and P2 , respectively. We now aim to compute the response utility value for x1 = R from
function node fP1

 and fP2
 . When applying GDP to fP1

 , a one-shot lower bound is con-
structed according to the entry e0 = {R,U, L,D} since it has the highest local utility value.
That is,

Therefore, any entry with local utility value less than 0.6 is filtered out. Unfortunately, as
demonstrated in Fig. 4a, since all entries are densely distributed in the range of [0.97, 1],
GDP actually cannot prune any combination from the search space in this case and fails to
accelerate Max-sum.

On the other hand, when applying FDSP to fP2
 , the algorithm sequentially extends the

partial assignment and performs branch and bound to reduce the search space. Figure 4b
presents the trace of FDSP on fP2

 when computing response utility for x1 = R where the
number labelled in each edge denotes the sequence of exploration. The algorithm explores
the search space in a depth-first fashion by extending a partial assignment. After 3 steps
of extension, FDSP reaches the first full assignment {R,D,R,D}2 and updates the lower
bound by

Unfortunately, the lower bound fails to reduce the search space in this case. In fact, it can
be clearly seen that the pruning only happens after visiting {R,U, L,D} . Therefore, in this
case FDSP needs to explore a considerably large proportion of search space to obtain a
high-quality lower bound. In fact, FDSP almost degenerates to vanilla Max-sum and only

lb = 1 + 0.2 − 0.4 + 0.3 − 0.5 + 0.3 − 0.3 = 0.6.

lb = 0.14 + 0.1 + 0.2 + 0.1 = 0.54.

(a) (b)

Fig. 4 Traces of GDP and FDSP on the NetRad system example

2 We have omitted x1 = R from the search tree.

Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

Page 11 of 40 24

prunes one partial assignment in this case. That is because it sequentially explores the
search space, and high utility values are sparsely distributed in the utility function.

In fact, dense utility values are ubiquitous in real-world scenarios due to the law of
diminishing marginal utility. Therefore, we aim to develop a series of efficient techniques
for accelerating belief propagation algorithms by alleviating the negative effect of dense
utility values.

5 Dynamic domain pruning techniques

In this section, we present our dynamic domain pruning techniques for accelerating Max-
sum. We begin with introducing GD2 P, a variant of GDP that integrates both search and
pruning to iteratively reduce the search space. To prune entries with the same utility value
effectively, we then present ST-GD2 P which merges the tied entries to search trees to ena-
ble branch and bound. Finally, we propose a discretization mechanism to offer a trade-
off between the reconstruction overhead and the domain pruning efficiency. We conclude
by discussing the modifications when applying our methods to other versions of belief
propagation.

5.1 GD2P

As demonstrated earlier, the quality of the lower bound is the key of efficient pruning,
especially when local utility values are dense. Therefore, we propose to integrate both
search and pruning and iteratively reduce the search space by continuously tightening a
running lower bound. Thus, the pruning is no longer a one-shot procedure and the scheme
is referred as Generic Dynamic Domain Pruning (GD2P). Alg.1 presents the sketch of GD2

P.
Similar to GDP, GD2 P also begins with complete sorting of each utility function (line

1-3). When computing a response message for a variable node xi ∈ �� , it searches for the
highest utility for each assignment vi ∈ Di by exhausting the sorted entries whose local
utility value is no less than the running lower bound lb in a sequential order (line 8–13).
Here, the lower bound is updated whenever a higher utility is found (line 10–11).

 Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

 24 Page 12 of 40

To look deeper into how dynamic domain pruning works, consider the instance in
Fig. 3c. The upper bound of query messages’ utility is given by

Then GD2 P sequentially explores the rows of sorted utility list (i.e., Fig. 4a) and updates
the lower bound until the current local utility value is less than the lower bound. Table 1
presents the detailed trace of GD2P.

Next, we theoretically show its correctness and superiority over GDP.

Theorem 1 GD2P guarantees the optimality of Eq. (2).

Proof Assume that the optimal entry e∗ is pruned by GD2 P when xi = vi . According to line
4, 8 and 11, we have

msgUB = max{0.4, 0.2} +max{0.5, 0.3} +max{0.3, 0.2} = 1.2.

Table 1 The trace of GD2 P on
f
P1

e f
P1
(e) util util

∗ lb

{R,U,L,D} 1 1.8 1.8 0.6
{R,D, L,D} 0.99 1.99 1.99 0.79
{R,U,R,D} 0.99 1.99 1.99 0.79
{R,U,L,U} 0.99 1.69 1.99 0.79
{R,D,R,D} 0.98 2.18 2.18 0.98
{R,D, L,U} 0.98 1.88 2.18 0.98
{R,U,R,U} 0.98 1.88 2.18 0.98
{R,D,R,U} 0.97 Pruned 2.18 0.98

Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

Page 13 of 40 24

where util∗ is the highest utility returned by GD2 P. Combing with query messages, we have

Since

it must be the case that

which results in e∗ is not an optimal entry, and is contradictory to the assumption. There-
fore, GD2 P must preserve entry e∗ . According to the assumption that e∗ is the optimal solu-
tion to Eq. (2) and the fact that util∗ is the maximum value of all visited entries (line 9–10),
GD2 P must return the value corresponding to e∗ and therefore guarantees the optimality of
Eq. (2). ◻

Theorem 2 GD2P never explores the entries pruned by GDP.

Proof Assume that GD2 P explores an entry e which is pruned by GDP at iteration m.
Denote the lower bound constructed by GDP as lbGDP and the current lower bound of
GD2 P as lbGD2P(m) . According to line 8, since e is explored by GD2 P but pruned by GDP,
it must be the case that

W.l.o.g., assume that sorting is stable, i.e., both GDP and GD2 P have the same sorted
local utility list and construct the initial lower bound using the same entry. Therefore,
lbGDP = lbGD

2P(0) , where lbGD2P(0) is the lower bound of GD2 P in iteration 0. Since
lbGD

2P(m) is non-decreasing (i.e., line 10-11), we have

which is contradictory to Eq. (5). ◻

The preprocessing overhead of GD2 P is the same as that of GDP. Formally, we have
the following proposition.

Proposition 1 GD2P requires O(n2dn) operations and O(ndn) space to preprocess a utility
function fj , where n = |��| is the arity of the function and d = maxxi∈�� |Di| is the maximum
domain size of the involved variables.

Proof Since the function has O(dn) utility values, for each involved variable and each value
it requires O(dn−1 log dn−1) = O((n − 1)dn−1) operations to perform sorting (line 1-3).

fj(e
∗) < lb = util∗ − msgUB

fj(e
∗) +

∑
xk∈���{xi}

qxk→fj
(e∗[xk]) < util∗ − msgUB +

∑
xk∈���{xi}

qxk→fj
(e∗[xk]).

∑
xk∈���{xi}

qxk→fj
(e∗[xk]) ≤

∑
xk∈���{xi}

max
vk∈Dk

qxk→fj
(vk) = msgUB,

fj(e
∗) +

∑
xk∈���{xi}

qxk→fj
(e∗[xk]) < util∗,

(5)lbGDP > fj(e) ≥ lbGD
2P(m).

lbGD
2P(m) ≥ lbGD

2P(0) = lbGDP,

 Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

 24 Page 14 of 40

Therefore, GD2 P needs O((n − 1)dn) operations for each variable and O(n2dn) operations in
total to perform preprocessing.

For space complexity, we first note that an assignment to the involved variables takes
O(n) space and thus storing all combinations of the involved variables requires O(ndn)
space for a variable. Since we could share these assignments across different variables via
pointers in practice, it takes O(dn) space for each variable to store the addresses of the data
structures corresponding to the assignments. Therefore, the overall space complexity of
GD2 P is O(ndn + ndn) = O(ndn) . ◻

To implement such sharing mechanism, we maintain an array of length �xi∈��
|Di| , in

which each element is the address of the data structure corresponding to an assignment to
all involved variables. To lookup the address of a specific assignment, we first convert the
assignment into an index according to a pre-defined dimension order, then get the corre-
sponding address by indexing the array. Therefore, the extra overhead of the mechanism
lies in computing the index for each assignment, which requires O(n) operations. Given n
variables and O(dn) assignments for each variable to be processed, the total extra overhead
is in O(n2dn) , which does not increase the overall time complexity of GD2P.

5.2 ST‑GD2P

As demonstrated by Fig. 4a and Table 1, both GDP and GD2 P perform poorly when there
are ties in utility functions since they use a linear structure to organize the search space.
Consequently, they have to exhaust all the tied entries whose local utility is no less than the
lower bound. Thus, we propose to organize tied entries into a search tree so as to enable
efficient branch and bound when the domain pruning technique fails to reduce the search
space. The scheme is referred as Search Tree-based GD2 P (ST-GD2 P) and Alg.2 presents
the sketch.

Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

Page 15 of 40 24

Different than completely sorting a utility function in GDP and GD2 P, ST-GD2 P only
sorts for distinct local utility values for each assignment of each variable in the preproc-
essing phase (line 1–4). After that, it groups the entries with the same local utility value

Fig. 5 Search trees for x1 = R
when applied to Fig. 3d

 Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

 24 Page 16 of 40

(line 5–9, 22–29) by inserting these entries to a search tree (line 22–29). In other words,
instead of maintaining a linear list in GDP and GD2 P, ST-GD2 P uses a sorted array
of search trees to collectively represent the search space. Note that the construction of
search trees can be done by a sequential iteration over the utility function as the trees
can be built incrementally. Similar to GD2 P, it maintains a running lower bound lb and
terminates whenever the local utility value is less than the lower bound (line 12–19).

It is noteworthy that instead of iterating over the sorted entries in GDP and GD2 P,
ST-GD2 P iterates over the distinct sorted utility values in descending order and per-
forms branch and bound to reduce the search space of tied entries. In more detail, for
each distinct local utility u, ST-GD2 P exhausts the corresponding search tree treei

j
(vi, u)

in a depth-first fashion. For a node in the search tree, the path from the root to that node
corresponds to a partial assignment. Therefore, by constructing a upper bound ubPA for
each partial assignment PA, we can efficiently explore the search tree by discarding the
subtree of a node whenever the upper bound of corresponding partial assignment is less
than the known highest utility util∗ (line 15–16). Formally, the upper bound is given by

Take Fig. 3d as an example. Given x1 = R , ST-GD2 P first sorts distinct local utility values
{1, 0.15, 0.14, 0.13} and builds a search tree for each of them. Figure 5 presents the search
trees. When computing the response utility for x1 = R , ST-GD2 P first performs branch and
bound to exhaust the search tree tree1

fP2
(R, 1) . It can be concluded that the algorithm termi-

nates after reaching the first full assignment {R,U, L,D} since it finds the highest utility
1.9, which results in a pruned rate of 87.5%.

We now show its correctness and its superiority over GD2P.

Theorem 3 ST-GD2P guarantees the optimality of Eq. (2).

Proof There are two lines that prune the search space, i.e., line 14 and line 16. We have
shown that line 14 cannot prune the highest utility in Theorem 1. Thus, we only need
to show that line 16 never prunes the optimal assignment. Assume that the optimal full
assignment A∗ is pruned by line 16. Thus, it must exist a prefix PA ⊂ A∗ such that

where util∗ is the highest utility found by ST-GD2 P. In fact,

Thus, we have

(6)ubPA = u +
∑
xk∈PA

qxk→fj
(PA[xk]) +

∑
xk∉PA

max
vk∈Dk

qxk→fj
(vk).

ubPA < util∗,

ubPA = fj(A
∗) +

∑
xk∈PA

qxk→fj
(PA[xk]) +

∑
xk∉PA

max
vk∈Dk

qxk→fj
(vk)

≥ fj(A
∗) +

∑
xk∈���{xi}

qxk→fj
(A∗[xk]).

fj(A
∗) +

∑
xk∈���{xi}

qxk→fj
(A∗[xk]) < util∗,

Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

Page 17 of 40 24

implying that there is another full assignment A� ≠ A∗ yielding higher utility than A∗ ,
which is contradictory to the assumption that A∗ is optimal. The optimality is hereby guar-
anteed. ◻

Theorem 4 ST-GD2P never explores the assignments pruned by GD2P.

Proof Assume that ST-GD2 P explores one full assignment A which is pruned by GD2 P.
Denote the lower bound of ST-GD2 P when exploring A as lbST and the lower bound of
GD2 P when pruning A as lbGD2P , respectively. It must be the case that

Since GD2 P sequentially exhausts the search space, it must exist an assignment A′ ≺ A
such that

which indicates that fj(A�) > fj(A) . On the other hand, ST-GD2 P explores distinct local util-
ity values in a descending order (line 4, 12 and 19 of Alg. 2). According to Eqs. (7–8), A′
produces a higher utility than A. Thus, ST-GD2 P must have explored an assignment A′′
such that

which implies

Therefore, Eq. (9) is contradictory to Eq. (7) and the theorem is concluded. ◻

The additional overheads of ST-GD2 P mainly lie in creating and maintaining the sorted
array of search trees. Specifically, we have the following result.

(7)lbGD
2P > fj(A) ≥ lbST .

(8)
lbGD

2P = fj(A
�) +

∑
xk∈���{xi}

qxk→fj
(A�[xk]) − max

vk∈Dk

qxk→fj
(vk)

> fj(A),

fj(A
��) +

∑
xk∈���{xi}

qxk→fj
(A��[xk]) ≥ fj(A

�) +
∑

xk∈���{xi}

qxk→fj
(A�[xk]),

(9)lbST ≥ fj(A
�) +

∑
xk∈���{xi}

qxk→fj
(A�

xk
) − max

vk∈Dk

qxk→fj
(vk) = lbGD

2P.

Fig. 6 ST-GD2 P operating on extremely dense utilities

 Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

 24 Page 18 of 40

Proposition 2 For each utility function, ST-GD2P requires O(n2dn) operations and space to
perform preprocessing.

Proof For a utility function with n variables, inserting an assignment to a search tree
requires O(n) operations (line 22–29). Therefore, building search trees for each variable
requires O(ndn) operations, and sorting these trees requires O((n − 1)dn) operations in the
worst case where all utility values are different. Given n variables to be preprocessed, the
overall time complexity is O(n2dn + (n2 − n)dn) = O(n2dn).

Similarly, in the worst case each search tree corresponds to a single assignment and
takes O(n) space. Therefore, ST-GD2 P needs O(ndn) space for a variable and O(n2dn) space
in total in order to perform preprocessing. ◻

5.3 Discretization mechanism

Since ST-GD2 P builds a search tree for each distinct local utility value, each tree would
correspond to a small search space when the local utility values are extremely dense, which
would incur unnecessary solution reconstructions. Consider the example in Fig. 6. Assume
that all the assignments with prefix {F, T} are pruned by line 16 and the highest utility is
attained on {F,F,F,F} . Obviously, ST-GD2 P has to visit the suboptimal partial assign-
ment {F, T} for four times in this case. Besides, storing small search trees is also memory-
consuming due to the repetitive substructures. In this example, since each search tree only
represents an assignment, substructures like {F,F,F} , {F,F, T} , {F, T ,F} and {F, T , T}
repeat twice, which results in the worst-case memory consumption. Finally, a large number
of unique utility values would also incur a high sorting overhead.

We overcome the issues by introducing a discretization mechanism. That is, instead of
sorting and building search trees for distinct local utility values directly, we first group the
utility values into several discrete slots. In more detail, given a step size 𝜂 > 0 , each util-
ity value u of a utility function is transformed to a discretized value s = �⌈u∕�⌉ , where
⌈⋅⌉ is the ceiling operation, which returns the least integer greater than or equal to a num-
ber. Then we sort all the distinct discretized values into a list S = {s1,… , s|S|} such that
si > sj,∀1 ≤ i < j ≤ |S| . For each s ∈ S , we merge all the entries in the utility function
whose discretized value is s into a search tree tree(vi, s) , and update the discretized value s

Fig. 7 Discretization mechanism
operating on extremely dense
utilities

Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

Page 19 of 40 24

to the maximum local utility value in the search space specified by tree(vi, s) . Again, note
that since search trees can be built incrementally, we only need a single scan to the utility
function in order to perform preprocessing.

When computing a response message, we sequentially explore the discretized value list
S, perform branch and bound on the corresponding search trees, and terminate if the cur-
rent discretized value s is smaller than the running lower bound. It is worth noting that
since discretized value s could be larger than the utility value of an entry in the search
space specified by tree(vi, s) , directly plugging s to Eq. (6) may not result in a tight upper
bound and would jeopardize the performance of branch and bound. Therefore, for each
node in the search tree tree(vi, s) , we maintain an estimation ests(⋅) which is the maximum
local utility achieved by any full assignment derived from that node. Now, the upper bound
of a partial assignment PA is given by3

Figure 7 presents the search trees after performing discretization with a step size of 1 on
the instance in Fig. 6, where the number associated with each node is the estimation. It can
be seen that both the number of search trees and total memory consumption are reduced
significantly. In fact, if we directly apply ST-GD2 P on Fig. 6, it would require 24 units
of memory to store 8 search trees. While we only need 16 units of memory to maintain 2
search trees after discretization, since all small search trees with utility value greater than
4.94 are merged into a single large search tree (i.e., tree1

f
(F, 5)).

It is noteworthy that beside helping to reduce the preprocessing overhead by restrict-
ing the number of discretized utility values, discretization mechanism also offers a trade-
off between domain pruning efficiency and reconstruction overhead. In more detail, a
small � produces fine-grained slots and could prune the suboptimal slots promptly (line
12 of Alg.2). In contrast, a large � tends to build search trees corresponding to large search
spaces, which reduces the reconstruction overhead since we are less likely to revisit the
same prefix when the search trees are large enough.

We now show the soundness and the complexity of discretization mechanism.

Theorem 5 ST-GD2P with discretization mechanism guarantees the optimality of Eq. (2).

Proof We first show that each discretized value s is no less than the local utility value of
any entry in the space specified by tree(vi, s) . Assume by contradiction that an entry e of
utility function fj belongs to the space specified by tree(vi, s) but fj(e) > s . Its discretized
value se is given by

which implies s ≠ se and thus e cannot belong to the space specified by tree(vi, s).

(10)ubPA = ests(PA) +
∑
xk∈PA

qxk→fj
(PA[xk]) +

∑
xk∉PA

max
vk∈Dk

qxk→fj
(vk).

se = 𝜂⌈ fj(e)
𝜂

⌉ ≥ fj(e) > s,

3 Recall that a path from the root to an internal node in a search tree specifies a partial assignment. We
therefore slightly abuse est

s
(PA) to denote the estimation of PA in tree(v

i
, s) which is stored in the node that

corresponds to PA.

 Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

 24 Page 20 of 40

Assume that the optimal entry e∗ belongs to a search tree which is pruned by the domain
pruning part of the algorithm under the discretization mechanism. Since the discretized
value is used to perform domain pruning, it must be the case that

where se∗ is the discretized value for entry e∗ . Applying the same argument in the proof of
Theorem 1, we conclude that e∗ cannot be optimal and the domain pruning part preserves
the optimality.

Similarly, assume that the optimal assignment A∗ is pruned by the branch and bound
part of the algorithm under the discretization mechanism. It must exist a prefix PA ⊂ A∗
such that

where sA∗ is the discretized value for assignment A∗ . Since by definition fj(A∗) ≤ estsA∗ (PA) ,
we have

and

Applying the same argument in the proof of Theorem 3, we conclude that A∗ cannot be
optimal and the branch and bound part preserves the optimality. Therefore, ST-GD2 P with
discretization mechanism guarantees the optimality of Eq. (2). ◻

Proposition 3 Given a utility function fj , let �j = maxe fj(e) −mine fj(e) be the difference
between the maximum and minimum utility values, and �j = mine,e�∶fj(e)≠fj(e�) |fj(e) − fj(e

�)|
be the minimum difference between two distinct utility values. ST-GD2P with discretization
mechanism requires O(n2dn) operations and O(�j

�
n2 + ndn) space to store search trees if

𝜂 > 𝜃j.

Proof We first note that ST-GD2 P with discretization mechanism degenerates to ST-GD2 P
if step size � is small enough, i.e., � ≤ �j . Hereafter we will focus on the case 𝜂 > 𝜃j.

Like ST-GD2 P, ST-GD2 P with discretization mechanism also needs to insert O(dn)
entries into search trees for each variable, which requires O(n2dn) operations in total. Since
the number of search trees in discretization mechanism is bounded by �j∕� , the overhead of
sorting search trees is O(n �j

�
log

�j

�
) , which is bounded by O(ndn log dn) = O(n2dn) . There-

fore, the overall time complexity is O(n2dn).

fj(e
∗) ≤ se∗ < util∗ − msgUB,

ubPA = estsA∗ (PA) +
∑
xk∈PA

qxk→fj
(PA[xk]) +

∑
xk∉PA

max
vk∈Dk

qxk→fj
(vk) < util∗,

ubPA ≥ fj(A
∗) +

∑
xk∈PA

qxk→fj
(PA[xk]) +

∑
xk∉PA

max
vk∈Dk

qxk→fj
(vk)

≥ fj(A
∗) +

∑
xk∈���{xi}

qxk→fj
(A∗[xk]),

fj(A
∗) +

∑
xk∈���{xi}

qxk→fj
(A∗[xk]) < util∗.

Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

Page 21 of 40 24

For space complexity, note that these search trees span the total search space. Therefore,
for each variable there are O(dn) leaves. On the other hand, since there are at most �j∕�
search trees according to the discretization mechanism, any partial assignment can only
appear at most �j∕� times (i.e., the case that every search tree contains the partial assign-
ment). Since there are n − 2 variables4 in a partial assignment in the worst case, ST-GD2 P
requires O(�j

�
(n − 2) + dn) = O(

�j

�
n + dn) space for a variable and O(�j

�
n2 + ndn) space for

all involved variables. ◻

5.4 Discussion

We note that our proposed algorithms can be easily adapted to the variants of Max-sum
and other versions of belief propagation. For example, we could adapt our algorithms to
speed up Max-product [50], which is an important instantiation of GDL to find maximum
a posteriori (MAP) assignment of a probabilistic graphic model, by changing the summa-
tion operations to the product operations (i.e., line 4, 9 and 11 of Alg.1, line 10, 14 and 16
of Alg.2). That is, msgUB now is the product of maximum value in the query messages
from non-target variables, the result is computed by multiplying the function value with the
corresponding value of query messages, and lb is computed by the best result found so far
dividing msgUB. Alternatively, one can cast Max-product belief propagation to Max-sum
and directly use our methods by operating on the log space of the problem.

When combining with Max-sum variants like damped Max-sum [7], bounded Max-sum
[43] and Max-sum_AD [56], our algorithms require few modifications since these vari-
ants still use Eq. (2) to compute response messages. However, there are variants which do
not exactly follow Eq. (2). For example, a function node in Max-sum_ADSSVP [4] needs
to consider the assignments of some neighbors when computing the maximum utility for
Eq. (2). In this case, an additional verification procedure needs to be introduced to filter
out the incompatible entries when performing branch and bound on a search tree. That
is, when visiting a node whose variable needs to be fixed, we first check its compatibility
before adding it to the partial assignment. If the assignment of the node is not consistent
with the given assignment, we discard all the subsequent search space by backtracking to
its parent.

6 Partial tree‑sorting scheme

In this section, we present a K-depth partial tree-sorting scheme to reduce the preproc-
essing overhead of the proposed ST-GD2 P. We begin with the motivation of using lim-
ited-depth tree-sorting scheme. Then we detail the proposed K-depth partial tree-sorting
scheme. Besides, we introduce several sorting criteria for ranking search spaces. Finally,
we propose a built-in termination detection mechanism to avoid unnecessary enumeration.

4 Note that the target variable is omitted from the search tree.

 Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

 24 Page 22 of 40

6.1 Motivation

A major drawback of ST-GD2 P is the high preprocessing overhead incurred by creating
and maintaining the full search trees. Although discretization mechanism attempts to alle-
viate the issue by merging small search trees, the complexities still depend on the step size
and the gap between the maximum utility and the minimum utility which varies in differ-
ent utility functions. Moreover, even in the best case, i.e., there is only one search tree for
each variable-assignment pair, ST-GD2 P still requires O(ndn) memory per function node to
maintain all trees, which is undesirable in memory-limited scenarios such as coordinating
low-power embedded devices [10].

Therefore, we consider to overcome the defect by limiting the depth of the search trees.
That is, given a utility function with the arity of n, instead of maintaining the full search
trees, we only consider the search trees with the depth of K < n , resulting the worest-case
memory overhead of O(nKdK) which allows the tradeoff between the memory consumption
and orderliness of search space. However, since each search tree now only specifies a sub-
space, several key issues arise when realizing such K-depth tree sorting scheme:

• How to implement branch and bound on limited-depth search trees?
• How to rank search trees when each search tree specifies a subspace rather than a con-

crete utility value?
• How to enforce domain pruning technique if the search trees are not ranked according

to the maximum utility value in their subspace?

We address the first issue in Sect. 6.2, by presenting a general framework called PTS.
Then we present several sorting criterion to rank search trees to solve the second issue in
Sect. 6.3. Finally, we propose a built-in termination detection mechanism to enforce the
domain pruning technique in Sect. 6.4.

6.2 K‑depth partial tree‑sorting scheme

In this section, we aim to develop a configurable K-Depth Partial Tree-sorting Scheme
(PTS) to provide a tight bound on the memory consumption, and perform preprocessing
phase within a user-specified memory budget.

Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

Page 23 of 40 24

Alg.3 presents the sketch of the partial tree-sorting scheme. Instead of sorting and
maintaining full search trees over n − 1 variables for each variable-assignment pair in
ST-GD2 P, PTS only considers the combinations of the first K non-target variables. Spe-
cifically, given the lexicographical ordering of the involved variables of a utility func-
tion fj , PTS first computes sorting variables SVi

j
 for target variable xi ∈ �� according to

where xi ≻ ��,� means xi is ordered after ��,� . Intuitively, SVi
j
 is the first K variables in the

scope of fj , except target variable xi . Then the algorithm iterates over all possible combi-
nations of SVi

j
 to build search trees (line 3–5). For each combination e, a sorting criterion

� is applied to assess the quality of the combination by summarizing the utility values in
the subspace of �� given the prefix of e ∪ {xi = vi} into a scalar weight we , which will be
detailed in Sect. 6.3. Optionally, like discretizing utility values in ST-GD2 P, the weight
also can be discretized by a step size of � . Then the combination is merged into the search
tree which has the same weight (or same discretized weight if discretization is used). After
exhausting the combinations of SVi

j
 , PTS sorts all the search trees by their weight (line 6).

Like in the discretization mechanism, when building search trees we also maintain an esti-
mation for each node in a search tree for efficient branch and bound.

It is noteworthy that both weight and estimation are indispensable for efficient branch
and bound. Horizontally, we sort the partial search trees by their weight for obtaining
high-quality lower bound promptly; vertically, estimations are used to compute a tight
upper bound for a partial assignment so as to discard suboptimal solutions as soon as
possible.

SVi
j
=

{{
��,�|1 ≤ k ≤ K

}
xi ≻ ��,�{

��,�|1 ≤ k ≤ K + 1 ∧ ��,� ≠ xi
}

Otherwise
,

 Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

 24 Page 24 of 40

When computing a response message for variable node xi ∈ �� , PTS sequentially
explores the sorted search trees by performing branch and bound to reduce the search
space until a termination condition is reached (line 9–17). Since we only build search
trees for the first K variables, the procedure Branch-and-bound (line 13) needs to be spe-
cialized to handle two halves of search spaces. Specifically, when performing branch and
bound on a search tree (i.e., the first half of the search space), we follow exactly the same
method in discretization mechanism and use Eq. (10) to compute upper bound for a partial
assignment.

After reaching a leaf of a search tree, the procedure Branch-and-bound needs to
exhaust the remaining subspace (i.e., the second half of the search space). In fact, the path
from the root to a leaf of a search tree now only corresponds to a prefix rather than a con-
crete full assignment. In other words, we still need to solve a smaller optimization problem
of Eq. (2) defined over ���(SVi

j
∪ {xi}).

Technically, all the existing approaches (e.g., exhaustive enumeration, GDP, GD2 P,
FDSP, etc.) can be used to exhaust the subspace. In our implementation, we use FDSP
due to its lower computational overhead. To this end, we maintain function estimations [5]
for the remaining n − K − 1 variables that do not appear in the search trees (i.e., the vari-
ables in ���(SVi

j
∪ {��})). When exhausting the remaining subspace, the upper bound of a

partial assignment is computed by querying the corresponding function estimation [i.e.,
Eqs. (3–4)].

It is noteworthy that our PTS requires less space than FDSP in the worst case when K is
small. Formally, we have the following results.

Proposition 4 Given a utility function, PTS requires O(nKdK) space to store search trees.

Proof Since PTS only builds search trees for the first K variables, a path from a root to a
leaf corresponds to an assignment of length K. The total number of combinations of K vari-
ables is O(dK) . Therefore, PTS requires O(KdK) space for one variable in the worst case,
and O(nKdK) to store all search trees. ◻

Corollary 1 PTS’ worst-case memory consumption is less than FDSP’s worst-case memory
consumption when K <

1+nd

n+d
.

Proof For the remaining n − K − 1 variables that do not appear in the search trees, PTS and
FDSP require the same space as both of them need to store function estimations for each
of these variables. For the first K variables, FDSP needs at least O([1 + d(n − K)]dK) space
since maintaining function estimations for variable ��,� requires O([1 + d(n − k)]dk) space
[5]. Letting nKdK < [1 + d(n − K)]dK , we arrive at K <

1+nd

n+d
. ◻

6.3 Sorting criteria

In ST-GD2 P, each path from a root to a leaf in an search tree uniquely determines a full
assignment to the involved variables of a utility function, and hence the utility values can
be directly used to rank these paths/assignments. However, since only a subset of variables
are sorted in PTS, a path now could correspond to a partial assignment and specify a sub-
space rather than a concrete utility value. Therefore, we propose to rank a partial assign-
ment by a scalar weight that summarizes the utility values in the corresponding subspace

Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

Page 25 of 40 24

(i.e., line 4, 6 of Alg.3). Specifically, given a utility function fj and a partial assignment e of
length K and the target variable-assignment pair xi = vi , we consider the following criteria
to compute the weight for summarizing subspace fj(e, xi = vi, ⋅).

– Maximum utility value. The most straightforward way to describe the subspace is the
maximum utility value in the subspace. Formally,

 where z is the remaining unassigned variables that do not appear in the prefix
e ∪ {xi = vi} . Computing the maximum utility value requires O(1) space to store the
result and O(dn−K−1) operations to exhaust the subspace.

– Mean utility value. Concentrating on the maximum utility value solely is not desirable
when the maximum utility value is sparsely distributed in the subspace. Therefore, this
criterion tries to remedy the issue by considering the average value of the subspace.
That is,

 The criterion has the same complexities as maximum utility value criterion, since both
of them need to exhaust the subspace.

– Q3 value. This criterion considers the third quartile of the utility values in the subspace.
Denote the sorted utility values (in ascending order) of fj(e, xi = vi, ⋅) as Ue

fj
 . Q3 value is

given by

 where m = ⌊0.75 × �fj(e, xi = vi, ⋅)�⌋ and � = 0.75 × |fj(e, xi = vi, ⋅)| − m . The criterion
needs to sort the utility values in the subspace, which requires O((n − K)dn−K−1) opera-
tions and O(dn−K−1) space.

– H-utility value. Analogous to the H-index [18] measuring the impact of a scholar, this
criterion attempts to capture simultaneously the quality and quantity of utility values.
Formally, given sorted utility values Ue

fj
 , the H-position of subspace fj(e, xi = vi, ⋅) is

given by

 where �j is the difference between the maximum and minimum utility values of fj , and
f −
j
= min�� fj(��) . Intuitively, an H-position of h means that there are at least

U
e
fj
[h]−f−

j

�j
× 100% entries in fj(e, xi = vi, ⋅) whose utility value ranks at the top

(1 −
U
e
fj
[h]−f−

j

�j
) × 100% of the utility range. Then H-utility is defined as

�max(fj(e, xi = vi, ⋅)) = max
z

fj(e, xi = vi, z),

�mean(fj(e, xi = vi)) =

∑
z fj(e, xi = vi, z)

�fj(e, xi = vi, ⋅)� .

�Q3
(fj(e, xi = vi, ⋅)) = U

e
fj
[m] + �(Ue

fj
[m + 1] − U

e
fj
[m]),

h = max

{
i ∈ ℕ

+|1 − i

|fj(e, xi = vi, ⋅)| ≥
U
e
fj
[i] − f −

j

�j

}
,

Fig. 8 Sorted utility list U

 Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

 24 Page 26 of 40

 Like Q3 value criterion, this criterion also operates on the sorted utility list, which
requires O((n − K)dn−K−1) operations and O(dn−K−1) space.

As an example, consider the following utility values.

The maximum utility value criterion returns �max = 10 , while the mean utility value is
�mean = 4.93 . For Q3 value and H-utility criteria, we need to first sort the utility values. Fig-
ure 8 gives the sorted utility list U.

The third quartile index m = ⌊15 × 0.75⌋ = 11 and � = 15 × 0.75 − 11 = 0.25 . There-
fore, �Q3

= 7 + 0.25 × (7 − 7) = 7 . For H-utility criterion, assume that � = 10 and f − = 0 .
We iterate over the sorted utility list and find the H-position h = 7 since 1 − 7∕15 > 4∕10
and 1 − 8∕15 < 5∕10 . Therefore, �H-utility = 4.

6.4 Built‑in termination detection mechanism

Since the search trees now are not necessarily ranked according to the maximum util-
ity value in their subspace, we cannot directly perform domain pruning and discard the
remaining search space when the estimation of current search tree is less than the lower
bound like ST-GD2 P (line 11 of Alg.2). In fact, when detected a suboptimal search tree,
the only thing we can do in PTS is to simply skip the tree and continue to explore the
next search tree (line 12, 16 of Alg.3). In other words, to compute a response utility for a

�H-utility(fj(e, xi = vi, ⋅)) = U
e
fj
[h].

0 1 3 5 8 10 2 6 4 7 9 4 5 7 3

(a) (b) (c)

(d)

Fig. 9 The trace of PTS

Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

Page 27 of 40 24

particular assignment, we must visit all search trees related to the assignment, which is not
desirable when the number of trees is large.

Therefore, we develop a termination detection mechanism to enable domain pruning
with few extra overheads. Alg.4 presents the sketch of the proposed mechanism.

The general idea behind the mechanism is keeping track of the set of visited search
trees. If all search trees with estimation higher than current lower bound are visited, then
PTS can terminate safely. To do this efficiently, we need to maintain another ordered
search tree list T in which trees are sorted by their estimation (line 1), and a record array
P. When PTS is invoked to compute a response utility, the mechanism clears the content
of record array P, and initializes two pointers �, r to the first position and the last position
of T, respectively (line 3–4). After exhausting a search tree t, we mark the corresponding
position as visited (line 5–6), and update the pointer � to exclude all visited search trees
(line 7–8). When the lower bound lb is updated, we update the pointer r by finding the last
search tree in T whose estimation is no less than lb via binary search (line 9). Finally, PTS
can terminate if � > r (line 10–11).

Consider the example shown in Fig. 9. Assume that we use 2-depth partial tree-sorting
scheme with sorting criterion �mean to compute response utility for x1 = F . Figure 9c, d
give 2-depth search trees and sorted result (i.e., SortedTree), respectively. The algorithm
begins with sorting the search trees by their estimation (i.e., T) and constructing an empty
array P (the first row of Fig. 9d). After exhausting the first search tree t3 , PTS updates
lower bound lb = 8 (line 13–15 of Alg.3). Therefore, termination detection mechanism
marks t3 as visited (line 5–6), and finds a new right pointer r = 2 which corresponds to
the last search tree with estimation no less than 8 (line 9). The results are presented in the
second row of Fig. 9d. Finally, after exhausting t2 , the mechanism marks the corresponding
position as visited and updates the left pointer � = 3 (line 5–8). Since � > r , the algorithm
terminates and prunes both t1 and t4.

We now are ready to show the correctness of PTS.

Theorem 6 PTS guarantees the optimality of Eq. (2).

 Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

 24 Page 28 of 40

Proof There are three lines that prune the search space, i.e., line 11–13 of Alg.3. Since we
have already proved that line 12 and line 13 do not affect the optimality of Eq. (2) in Theo-
rem 5, we only need to show that line 11 does not prune the optimal assignment.

Assume that the optimal assignment A∗ belongs to a search tree t∗ which is pruned by
line 11 of Alg.3. Denote the index of t∗ in T as i∗ . According to line 10-11 of Alg.4, it must
be the case that i∗ > r by the end of execution since otherwise PTS must have visited t∗
(line 6–8 of Alg.4), which implies that the estimation of t∗ is less than lb (line 9 of Alg.4).
That is,

According to line 15 of Alg.3, there must be an assignment A� ≠ A∗ such that

which implies

Therefore, A∗ cannot be an optimal assignment and PTS guarantees to return the optimal
utility values. ◻

7 Empirical evaluations

In this section, we empirically evaluate the proposed algorithms when accelerating Max-
sum on various standard benchmark problems. We first present the results on random n-ary
DCOPs to show our superiorities on general problems. To examine the performance on the
problems with dense local utility values, we conduct experiments on the problems in which
utility values follow a power-law distribution. Finally, we present the results on realistic
benchmarks including NetRad systems and channel allocation problems.

7.1 Experimental configurations

We benchmark algorithms with three types of problems, i.e., random n-ary DCOPs, Net-
Rad system problems and channel allocation problems.

• Random n-ary DCOPs are the general form of the n-ary distributed constraint opti-
mization problems. In the experiments, we vary the number of function nodes from
10 to 100. For each function node, we randomly sample the arity n from either [2,5]
(low arity problems) or [5,8] (high arity problems), and connect the function node
to n variable nodes. The total number of variable nodes is specified by variable
tightness [5], which is randomly picked from either [0.1,0.5] (sparse problems) or

fj(A
∗) ≤ est(t∗) < lb.

fj(A
∗) < fj(A

�) +
∑

xk∈���{xi}

qxk→fj
(A�[xk]) − max

vk∈Dk

qxk→fj
(vk)

< fj(A
�) +

∑
xk∈���{xi}

qxk→fj
(A�[xk]) − qxk→fj

(A∗[xk])
,

fj(A
∗) +

∑
xk∈���{xi}

qxk→fj
(A∗[xk]) < fj(A

�) +
∑

xk∈���{xi}

qxk→fj
(A�[xk]).

Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

Page 29 of 40 24

[0.5,0.9] (dense problems). Further, we generate large domain problems and small
domain problems by uniformly selecting a domain size from [5,8] and [2,5] for each
variable, respectively. Finally, for each function node, the utility values are sampled
either uniformly or according to a power-law from the range of [0, 1000].

• NetRad system problems [22] aim to find a joint scanning strategy to maximize the
total utility of scanning weather phenomena. Specifically, each radar is modelled
as a variable whose assignment represents its scanning strategy (i.e., any combina-
tion of E,N,W,S). Weather phenomena with different sizes, weights and types are
randomly generated across grids. Each phenomenon can be sensed by a subset of
radars, and the scanning utility is determined by the joint strategy of the radars. In
our experiments, the utility functions are defined according to [39]. We consider
the NetRad systems with 48 and 96 radars which are arranged into 6 × 8 and 8 × 12
grids, respectively. In this set of experiments, the maximal utility of a function is 1,
the maximal arity is 4 and the domain size of a variable can go up to 15.

• Channel allocation problems [37] try to coordinate a set of access points (APs)
to minimize the radio interference. Let xi be the channel allocated to AP i, Pi be
the signal strength of i at the source, dij be the distance between AP i and j, and
Api = {j|Pj > Nbd

2
ij
} be the set of APs which can cause interference to the signal of i

with background noise Nb . Then the utility function for AP i is modelled as

(a) (b)

(c) (d)

Fig. 10 NCLOs speedup of different algorithms on sparse random n-ary DCOPs

 Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

 24 Page 30 of 40

 where W is a constant and � is the indicator function. In our experiments, we consider
a 300 × 300 map, 10 available channels, and vary the number of APs from 60 to 100.
For each AP i, we uniformly pick its power Pi from the range [490,510]. Finally, we
set W = 20 , and generate sparse problems and dense problems by setting Nb = 1 and
Nb = 0.5 , respectively.

The baselines we consider are GDP and FDSP since they are domain-independent state-
of-the-art acceleration methods for belief propagation algorithms. Since channel allocation
problems is a type of cardinality factors, we also consider THOP-based method [48] as an
additional baseline.5

The performance metrics we consider include NCLOs [34] speedup, pruned rate [21]
and simulated runtime [47]. We consider a logical operation to be an access to a query

(11)fi(��) = W log2

⎛⎜⎜⎜⎝
1 +

Pi

1 +
∑

j∈Api

Pj

d2
ij

��xi−xj�≤3

⎞⎟⎟⎟⎠
,

(a) (b)

(c) (d)

Fig. 11 Simulated runtime of different algorithms on sparse random n-ary DCOPs

5 The implementation of compared baselines and our proposed algorithms can be found in https:// github.
com/ dyc94 1126/ ARTGD 2P.

https://github.com/dyc941126/ARTGD2P
https://github.com/dyc941126/ARTGD2P

Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

Page 31 of 40 24

message, and compute NCLOs speedup of an acceleration algorithm by dividing its total
number of non-concurrent logical operations in an execution by the number of non-
concurrent logical operations in vanilla Max-sum running for the same iterations. Then
the NCLOs speedup is the remaining after subtracting the quotient from 1. This metric
reflects the general acceleration capability of an algorithm in a distributed environment.
Besides, we also consider the percentage of search space pruned (i.e., pruned rate)
which is the improvement in terms of the total number of message accesses incurred in
an execution. This metric drops the factor of concurrency and assesses purely the prun-
ing capability of an algorithm. Finally, the simulated runtime directly reflects the overall
performance of an acceleration algorithm in a distributed environment.

For each experiment, we generate 50 random instances and terminate algorithms
after 2000 iterations with the timeouts of 1800s (in terms of simulated runtime), report-
ing the averaged metrics and standard errors as the results and the confidence inter-
vals, respectively. For each instance, we host each function node randomly in one of
its involved agents. All the experiments are conducted on a 32-cores Linux worksta-
tion with 384 GB memory. Finally, to avoid the potential precision loss incurred by
floating-point numbers during an execution, we cast the utility values to big integers by
multiplying by 106 . That is important for a fair comparison since it ensures that every
algorithm has the same query messages in every iteration and solves exactly the same
optimization problem of Eq. (2) when computing response messages.

(a) (b)

(c) (d)

Fig. 12 NCLOs speedup of different algorithms on dense random n-ary DCOPs

 Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

 24 Page 32 of 40

(a) (b)

(c) (d)

Fig. 13 Simulated runtime of different algorithms on dense random n-ary DCOPs

Fig. 14 Performance comparison
on the problems with dense util-
ity functions

Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

Page 33 of 40 24

7.2 Evaluations of dynamic domain pruning techniques

Figures 10 and 11 present the results when solving sparse random n-ary DCOPs. It can be
seen that FDSP performs worse than ST-GD2 P in terms of NCLOs speedup. That is due
to the fact that FDSP performs a depth-first search on a huge search tree without any a
priori knowledge. On the other hand, our ST-GD2 P performs branch and bound on a sorted
array of search trees and can find an efficient lower bound more promptly, reducing about
95% - 99.9% of operations, which demonstrates great superiorities over the other competi-
tors. It can be clearly seen from Fig. 11 that the simulated runtime of all ST-GD2 P variants
is lower than the one of FDSP, except the problems with large domain and high arity due
to the excessive preprocessing overhead of building search trees. Nonetheless, combining
with K-depth partial tree-sorting scheme, our proposed PTS requires the lowest runtime on
the problems with large domain and high arity.

Besides, our GD2 P maintains a running lower bound and significantly improves the per-
formance of GDP, which highlights the importance of tight lower bounds in domain prun-
ing techniques. In fact, GD2 P requires runtime lower than FDSP when solving the prob-
lems with low arity (i.e., Fig. 11a, c). That might be due to the extra overhead FDSP needs
to query function estimation to compute the upper bound for each partial assignment.
Finally, step size plays an important role in the overall performance of ST-GD2 P. In more
detail, ST-GD2 P with an appropriate step size (e.g., � = 50) has a higher NCLOs speedup
than other versions of ST-GD2 P. That is because the algorithm with a small step size (e.g.,
� = 1) tends to build small search trees which lead to frequently solution reconstruction,
while a large step size (e.g., � = 100) would produces coarse utility slots, preventing the
algorithm from pruning suboptimal solutions promptly. Besides, a small step size can also
incur a large preprocessing overhead. In fact, as shown in Figs. 10d and 11d, ST-GD2 P
with � = 1 and � = 10 have significantly higher simulated runtime than other variants, and
run out of memory when solving the large-domain, high-arity problems with more than 40
and 80 function nodes, respectively.

Figures 12 and 13 present the results when solving dense random n-ary DCOPs. Com-
pared to the ones in sparse problems, the variable nodes in these problems are over-con-
strained due to high variable tightness. Specifically, each variable node in this set of prob-
lems connects to 4 function nodes on average. As a result, query messages are amplified
quickly due to the excessive cyclic information propagation in dense problems [54] as

(a) (b)(a) (b)

Fig. 15 Simulated runtime of different algorithms on NetRad system problems

 Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

 24 Page 34 of 40

Max-sum proceeds, which may widen the difference between the maximum message util-
ity and the message utility corresponding to the assignment with the highest local utility
value. Therefore, GDP needs to explore more entries to cover the gap when solving a dense
problem, and fails to solve the large-domain, high-arity problem in reasonable time. In fact,
comparing to Fig. 10 we can clearly see that the performance of GDP degenerates sig-
nificantly and is strictly dominated by other competitors. In contrast, our dynamic domain
pruning techniques are more robust to the high variable tightness due to the continuously
tightening lower bound. Besides, it is interesting to find that different from the results on
sparse problems, ST-GD2 P with small step size (e.g., � = 1) is dominated by FDSP when
solving high-arity problems in terms of simulated runtime (i.e., Fig. 13b, d). In addition to
high preprocessing overhead, another possible reason for this could be that FDSP performs
a depth-first search on search trees, which significantly reduces solution reconstructions.
However, by limiting the depth of sorted tree, our proposed PTS reduces both preprocess-
ing overhead and solution reconstruction overhead, which demonstrates its merits on gen-
eral n-ary DCOPs.

Table 2 Pruned rate (%) of PTS (� = 0.1) with different sorting criteria and depths on sparse channel allo-
cation problems

Bold values indicate the best results

of access points 60 70 80 90 100

Average arity 3.24 3.28 3.29 3.39 3.51

�max K = 1 99.27 ± 0.212 99.294 ±
0.284

99.361 ±
0.239

99.717 ±
0.076

99.747 ± 0.077

K = 2 99.396 ±
0.165

99.422 ±
0.216

99.462 ±
0.186

99.746 ±
0.066

99.779 ± 0.063

K = 3 99.35 ± 0.178 99.349 ±
0.261

99.424 ±
0.192

99.723 ±
0.072

99.764 ± 0.064

�mean K = 1 99.343 ±
0.191

99.354 ±
0.258

99.42 ± 0.219 99.737 ±
0.073

99.778 ± 0.067

K = 2 99.41 ± 0.164 99.427 ±
0.215

99.47 ± 0.185 99.75 ± 0.067 99.786 ± 0.061

K = 3 99.347 ± 0.18 99.34 ± 0.264 99.413 ±
0.197

99.717 ±
0.074

99.761 ± 0.065

�Q3
K = 1 99.341 ±

0.193
99.353 ±

0.258
99.414 ±

0.225
99.735 ±

0.074
99.777 ± 0.068

K = 2 99.417 ±
0.163

99.436 ±
0.212

99.476 ±
0.183

99.751 ±
0.066

99.789 ± 0.06

K = 3 99.348 ±
0.181

99.346 ±
0.262

99.421 ±
0.193

99.721 ±
0.073

99.765 ± 0.064

�H-utility K = 1 99.303 ±
0.209

99.313 ±
0.286

99.395 ±
0.232

99.731 ±
0.076

99.772 ± 0.07

K = 2 99.229 ±
0.245

99.242 ±
0.347

99.368 ±
0.238

99.721 ±
0.078

99.765 ± 0.07

K = 3 98.974 ±
0.329

98.96 ± 0.513 99.189 ±
0.303

99.64 ± 0.104 99.699 ± 0.092

FDSP 99.171 ±
0.257

99.148 ±
0.383

99.29 ± 0.29 99.702v0.083 99.733 ± 0.086

ST-GD2 P (� = 0.1) 97.8 ± 0.549 98.471 ±
0.286

98.744 ±
0.112

99.013 ± 0.11 99.17 ± 0.073

Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

Page 35 of 40 24

To examine the general pruning capability on the problems with dense utility functions,
we consider the problems with 100 function nodes, low arity, large domain size and the
variable tightness of 0.5. For each problem, there are a number of dense function nodes
whose utility values are selected according to a power-law distribution. More specifically,
the probability of selecting a utility u ∈ (0, 1000) is proportional to (1000 − u)−� . In our
experiments, we set � = 1.1 . Figure 14 presents the performance comparison in terms of
the pruned rate.

It can be seen that the performance of GDP decreases by near 20% w.r.t. growing dense
function nodes, which indicates that GDP is sensitive to dense utility functions. That is
due to the fact that the pruned range could contain many entries since the utility values
are close to each other in dense utility functions. On the other hand, although GD2 P also
relies on domain pruning to reduce the search space, it is much more robust to the pres-
ence of dense function nodes due to the iteratively tighten lower bound. In fact, with the
growing of dense function nodes its performance only drops by 4%. Finally, dense func-
tion nodes can hardly deteriorate the performance of ST-GD2 P since it can still perform

Table 3 Pruned rate (%) of PTS (� = 0.1) with different sorting criteria and depths on dense channel alloca-
tion problems

Bold values indicate the best results

of access points 60 70 80 90 100

Average arity 3.64 3.69 3.95 4.14 4.13

�max K = 1 99.559 ±
0.272

99.824 ±
0.106

99.879 ±
0.031

99.89 ± 0.027 99.878 ± 0.046

K = 2 99.639 ±
0.208

99.85 ± 0.087 99.893 ±
0.027

99.903 ±
0.022

99.893 ± 0.038

K = 3 99.653 ±
0.199

99.856 ±
0.082

99.894 ±
0.024

99.906 ± 0.02 99.896 ± 0.034

�mean K = 1 99.57 ± 0.273 99.842 ±
0.097

99.891 ±
0.028

99.903 ±
0.024

99.894 ± 0.038

K = 2 99.625 ±
0.225

99.854 ±
0.087

99.896 ±
0.027

99.909 ±
0.021

99.9 ± 0.035

K = 3 99.644 ±
0.206

99.853 ±
0.086

99.892 ±
0.027

99.905 ±
0.021

99.897 ± 0.033

�Q3
K = 1 99.578 ±

0.266
99.842 ±

0.097
99.891 ±

0.029
99.903 ±

0.024
99.894 ± 0.039

K = 2 99.651 ±
0.202

99.857 ±
0.084

99.897 ±
0.027

99.909 ±
0.021

99.902 ± 0.033

K = 3 99.655 ±
0.199

99.857 ±
0.082

99.893 ±
0.026

99.906 ±
0.021

99.898 ± 0.032

�H-utility K = 1 99.552 ±
0.287

99.835 ±
0.104

99.89 ± 0.029 99.902 ±
0.025

99.89 ± 0.042

K = 2 99.542 ±
0.295

99.835 ±
0.105

99.89 ± 0.029 99.903 ±
0.024

99.891 ± 0.041

K = 3 99.416 ±
0.388

99.799 ±
0.133

99.874 ±
0.032

99.89 ± 0.028 99.875 ± 0.048

FDSP 99.464 ±
0.349

99.804 ±
0.129

99.877 ±
0.032

99.886 ±
0.031

99.875 ± 0.045

ST-GD2 P (� = 0.1) 99.263 ±
0.211

99.346 ±
0.142

99.573 ±
0.067

99.566 ± 0.07 –

 Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

 24 Page 36 of 40

effective branch-and-bound according to the query messages when local utility values are
not distinguishable.

Figure 15 presents the results on NetRad system problems. It can be concluded that
GDP performs poorly and the runtime grows quickly w.r.t. the number of phenomena in
both cases. In contrast, our proposed GD2 P and ST-GD2 P significantly outperform GDP,
only requiring about a half and one-tenth of its runtimes, respectively. On the other hand,
although FDSP outperforms domain pruning variants, it is still dominated by ST-GD2 P.
This is due to the fact that with the sorted search trees our proposed ST-GD2 P can find a
high-quality lower bound quickly despite of highly-structured utility functions, which high-
lights the importance of search space sorting.

7.3 Evaluations of partial tree‑sorting scheme variants

Table 2 and 3 tabulate the pruned rate of PTS with different sorting criteria and sorting
depths on channel allocation problems. Compared to NetRad system problems, this set of
problems are more challenging due to higher arity and more structured utility functions. In
fact, both GDP and GD2 P fail to terminate in reasonable time. Therefore, we only present
the results of PTS and FDSP. It can be concluded that both sorting depth K and sorting
criterion � can significantly affect the pruned rate. Specifically, PTS with a small K still
can outperform FDSP. That is because FDSP sequentially explores all possible combina-
tions starting from an all-one assignment, which is very inefficient in channel allocation
problems since the first 4n−1 assignments correspond to low local utility values accord-
ing to Eq. (11). On the other hand, our PTS tries to improve by ranking the most promis-
ing search trees at the top according to their weights, so as to find a high-quality lower
bound more promptly. Therefore, a small permutation (e.g., K = 1) can greatly reduce the
search effort, and the benefit increases as the preprocessing budget K is increased. Besides,
ST-GD2 P fails to solve the dense problems with 100 APs since it runs out of memory, and
exhibits the worst performance on all remaining test cases. That might due to the large
number of search trees after partitioning the search space of large factors. Consequently,
solution reconstruction happens frequently and offsets the advantage of completely sorting.

For sorting criterion, it can be seen that directly using the maximum utility value to rank
the search trees performs poorly when the sorting depth is small. That is not surprising
since �max completely ignores the quantity of utility values in the remaining search space.

(a) (b)

Fig. 16 Simulated runtime of PTS (� = 0.1) different sorting criteria on channel allocation problems

Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

Page 37 of 40 24

However, the performance of �max is generally improved when K is large, especially on
dense problems. That is because the size of the remaining search space is reduced if the
search trees include more variables, and therefore the effect of quantity on pruning effi-
ciency is reduced. Differently, �mean takes quantity into consideration, achieving better per-
formance when K is small. However, its performance does not necessarily grow as the sort-
ing depth increases. In fact, �mean is inferior to �max on the most of test cases when K = 3 .
Quartile criterion �Q3

 considers the fine-grained statistical characteristics of utility value
distribution, and is superior to all compared criteria as well as FDSP when K = 2 . Finally,
although �H-utility tries to capture simultaneously the quality and quantity of utility values,
it is strictly dominated by �mean . A possible reason could be that �H-utility assumes a uniform
distribution of utility values in calculating H-position, which may not be applicable to the
highly-structured utility function of channel allocation problems.

Figure 16 presents simulated runtime of PTS with different sorting criteria on chan-
nel allocation problems when K = 2 . Notably, THOP-based method exhibits the lowest
runtime on all test cases. That is due to the fact that it only requires several linear scans
over involved variables to perform sorting and dynamic programming when computing a
response message. However, as we discussed earlier, THOP-based methods have a lim-
ited generality since it requires a utility function can be represented by a specific type
of THOPs. Arguably, applying THOP-based methods also requires laborous expertise to
identify the pattern of each utility function to implement a specific THOP-based method.
Instead, our proposed algorithms make no assumption about the utility function and thus
can be applied to general settings. It can be seen that compared to FDSP, PTS with �max
and �mean has a smaller preprocessing overhead. That is because the calculation of maxi-
mum and mean utility value only requires linear time to scan entries, while FDSP needs to
perform multiple phases of dynamic programming to compute the function estimations for
each involved variables. On the other hand, the preprocessing phase of PTS with �Q3

 and
�H-utility takes more time than FDSP. This is due to the higher complexity of utility sort-
ing. In addition to lower preprocessing overhead, it is noteworthy that our proposed PTS
with �max and �mean also significantly outperforms FDSP in terms of total runtime. In fact,
our PTS is about 11% and 16% faster than FDSP on sparse problems when using �max and
�mean , respectively.

8 Conclusion

Max-sum and its variants are important belief propagation algorithms for solving DCOPs
but suffer from a high computational complexity. In this paper, we demonstrate that the
state-of-the-art algorithms for accelerating Max-sum could perform poorly when dealing
with the problems with dense utility functions. To alleviate the negative effect of densely
distributed utility values, we propose to iteratively update the lower bound and organize
the tied entries to search trees. Further, we present a discretization mechanism to offer a
tradeoff between the reconstruction overhead and domain pruning efficiency. Finally, we
propose a K-depth partial tree-sorting scheme with different sorting criteria to reduce the
preprocessing overhead. We theoretically show the correctness and superiority of our pro-
posed algorithms. The extensive empirical evaluations confirm the advantages over the
state-of-the-art methods on both synthetic and realistic benchmarks.

We note that all the existing acceleration methods are based on static knowledge and
fail to exploit the characteristics of GDL algorithms or runtime information. For example,

 Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

 24 Page 38 of 40

query messages in Damped Max-sum could change slowly when damping factor is high.
Therefore, one can leverage such similarity between two consecutive iterations and give
priority to search the neighborhood of optimal assignment found in the last iteration. In our
future work, we plan to utilize the algorithmic characteristics or running history to further
improve the performance of our algorithms.

Acknowledgements This research was supported by the National Research Foundation, Singapore under
its AI Singapore Programme (AISG Award No: AISG-RP-2019-0013), National Satellite of Excellence in
Trustworthy Software Systems (Award No: NSOE-TSS2019-01), and NTU.

References

 1. Aji, S. M., & McEliece, R. J. (2000). The generalized distributive law. IEEE Transactions on Informa-
tion Theory, 46(2), 325–343.

 2. Atlas, J., Warner, M., & Decker, K. (2008). A memory bounded hybrid approach to distributed con-
straint optimization. In Proceedings of 10th international workshop on distributed constraint reason-
ing (pp. 37–51).

 3. Chen, D., Deng, Y., Chen, Z., Zhang, W., & He, Z. (2020). HS-CAI: A hybrid DCOP algorithm via
combining search with context-based inference. In AAAI (pp. 7087–7094).

 4. Chen, Z., Deng, Y., Wu, T., & He, Z. (2018). A class of iterative refined max-sum algorithms via
non-consecutive value propagation strategies. Autonomous Agents and Multi-Agent Systems, 32(6),
822–860.

 5. Chen, Z., Jiang, X., Deng, Y., Chen, D., & He, Z. (2019). A generic approach to accelerating belief
propagation based incomplete algorithms for DCOPs via a branch-and-bound technique. In AAAI (pp.
6038–6045).

 6. Chen, Z., Zhang, W., Deng, Y., Chen, D., & Li, Q. (2020). RMB-DPOP: Refining MB-DPOP by
reducing redundant inference. In AAMAS (pp. 249–257).

 7. Cohen, L., Galiki, R., & Zivan, R. (2020). Governing convergence of max-sum on DCOPs through
damping and splitting. Artificial Intelligence, 279, 103212.

 8. Dechter, R., & Mateescu, R. (2007). AND/OR search spaces for graphical models. Artificial Intelli-
gence, 171(2–3), 73–106.

 9. Deng, Y., & An, B. (2020). Speeding up incomplete GDL-based algorithms for multi-agent optimiza-
tion with dense local utilities. In IJCAI (pp. 31–38).

 10. Farinelli, A., Rogers, A., Petcu, A., & Jennings, N.R. (2008). Decentralised coordination of low-power
embedded devices using the max-sum algorithm. In AAMAS (pp. 639–646).

 11. Fioretto, F., Yeoh, W., Pontelli, E., Ma, Y., & Ranade, S. J. (2017). A distributed constraint optimiza-
tion (DCOP) approach to the economic dispatch with demand response. In AAMAS (pp. 999–1007).

 12. Freuder, E. C., & Quinn, M. J. (1985). Taking advantage of stable sets of variables in constraint satis-
faction problems. IJCAI, 85, 1076–1078.

 13. Gershman, A., Meisels, A., & Zivan, R. (2009). Asynchronous forward bounding for distributed COPs.
Journal of Artificial Intelligence Research, 34, 61–88.

 14. Givoni, I. E., & Frey, B. J. (2009). A binary variable model for affinity propagation. Neural Computa-
tion, 21(6), 1589–1600.

 15. Hirayama, K., Miyake, K., Shiotani, T., & Okimoto, T. (2019). DSSA+: Distributed collision avoid-
ance algorithm in an environment where both course and speed changes are allowed. International
Journal on Marine Navigation and Safety of Sea Transportation, 13(1), 117–123.

 16. Hirayama, K., & Yokoo, M. (1997). Distributed partial constraint satisfaction problem. In CP (pp.
222–236).

 17. Hirayama, K., & Yokoo, M. (2005). The distributed breakout algorithms. Artificial Intelligence,
161(1–2), 89–115.

 18. Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the
National academy of Sciences, 102(46), 16569–16572.

 19. Hoang, K.D., Fioretto, F., Yeoh, W., Pontelli, E., & Zivan, R. (2018). A large neighboring search
schema for multi-agent optimization. In CP (pp. 688–706).

 20. Katagishi, H., & Pearce, J.P. (2007). KOPT: Distributed DCOP algorithm for arbitrary k-optima with
monotonically increasing utility. In DCR workshop.

Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

Page 39 of 40 24

 21. Khan, M.M., Tran-Thanh, L., & Jennings, N.R. (2018). A generic domain pruning technique for GDL-
based DCOP algorithms in cooperative multi-agent systems. In AAMAS (pp. 1595–1603).

 22. Kim, Y., Krainin, M., & Lesser, V. (2011). Effective variants of the max-sum algorithm for radar coor-
dination and scheduling. In WI/IAT (pp. 357–364).

 23. Kim, Y., & Lesser, V. (2013). Improved max-sum algorithm for DCOP with n-ary constraints. In
AAMAS (pp. 191–198).

 24. Kim, Y., & Lesser, V. (2014). DJAO: A communication-constrained DCOP algorithm that combines
features of ADOPT and Action-GDL. In AAAI (pp. 2680–2687).

 25. Komodakis, N., & Paragios, N. (2009). Beyond pairwise energies: Efficient optimization for higher-
order mrfs. In CVPR (pp. 2985–2992). IEEE.

 26. Kschischang, F. R., Frey, B. J., Loeliger, H. A., et al. (2001). Factor graphs and the sum-product algo-
rithm. IEEE Transactions on Information Theory, 47(2), 498–519.

 27. Li, S., Negenborn, R. R., & Lodewijks, G. (2016). Distributed constraint optimization for addressing
vessel rotation planning problems. Engineering Applications of Artificial Intelligence, 48, 159–172.

 28. Litov, O., & Meisels, A. (2017). Forward bounding on pseudo-trees for DCOPs and ADCOPs. Artifi-
cial Intelligence, 252, 83–99.

 29. Macarthur, K.S., Stranders, R., Ramchurn, S.D., & Jennings, N.R. (2011). A distributed anytime algo-
rithm for dynamic task allocation in multi-agent systems. In AAAI (pp. 701–706).

 30. Maheswaran, R. T., Pearce, J. P., & Tambe, M. (2004). Distributed algorithms for DCOP: A graphical-
game-based approach. In ISCA PDCS (pp. 432–439).

 31. Marinescu, R., & Dechter, R. (2009). AND/OR branch-and-bound search for combinatorial optimiza-
tion in graphical models. Artificial Intelligence, 173(16–17), 1457–1491.

 32. Modi, P. J., Shen, W. M., Tambe, M., & Yokoo, M. (2005). ADOPT: Asynchronous distributed con-
straint optimization with quality guarantees. Artificial Intelligence, 161(1–2), 149–180.

 33. Monteiro, T. L., Pujolle, G., Pellenz, M. E., Penna, M. C., & Souza, R. D. (2012). A multi-agent
approach to optimal channel assignment in WLANs. In WCNC (pp. 2637–2642).

 34. Netzer, A., Grubshtein, A., & Meisels, A. (2012). Concurrent forward bounding for distributed con-
straint optimization problems. Artificial Intelligence, 193, 186–216.

 35. Nguyen, D. T., Yeoh, W., Lau, H. C., & Zivan, R. (2019). Distributed Gibbs: A linear-space sampling-
based DCOP algorithm. Journal of Artificial Intelligence Research, 64, 705–748.

 36. Okamoto, S., Zivan, R., & Nahon, A. (2016). Distributed breakout: Beyond satisfaction. In IJCAI (pp.
447–453).

 37. Ottens, B., Dimitrakakis, C., & Faltings, B. (2017). DUCT: An upper confidence bound approach to
distributed constraint optimization problems. ACM Transactions on Intelligent Systems and Technol-
ogy, 8(5), 69:1-69:27.

 38. Pearce, J.P., & Tambe, M. (2007). Quality guarantees on k-optimal solutions for distributed constraint
optimization problems. In IJCAI (pp. 1446–1451).

 39. Pepyne, D., Westbrook, D., Philips, B., Lyons, E., Zink, M., & Kurose, J. (2007). A design for distrib-
uted collaborative adaptive sensing of the atmosphere. Tech. rep. University of Massachusetts.

 40. Petcu, A., & Faltings, B. (2005). A scalable method for multiagent constraint optimization. In IJCAI
(pp. 266–271).

 41. Petcu, A., & Faltings, B. (2007). MB-DPOP: A new memory-bounded algorithm for distributed opti-
mization. In IJCAI (pp. 1452–1457).

 42. Pujol-Gonzalez, M., Cerquides, J., Meseguer, P., Rodríguez-Aguilar, J. A., & Tambe, M. (2013). Engi-
neering the decentralized coordination of uavs with limited communication range. In CAEPIA (pp.
199–208).

 43. Rogers, A., Farinelli, A., Stranders, R., & Jennings, N. R. (2011). Bounded approximate decentralised
coordination via the max-sum algorithm. Artificial Intelligence, 175(2), 730–759.

 44. Rollon, E., & Larrosa, J. (2012). Improved bounded max-sum for distributed constraint optimization.
In CP (pp. 624–632). Springer.

 45. Rollon, E., & Larrosa, J. (2014). Decomposing utility functions in bounded max-sum for distributed
constraint optimization. In CP (pp. 646–654). Springer.

 46. Stranders, R., Farinelli, A., Rogers, A., & Jennings, N. R. (2009). Decentralised coordination of mobile
sensors using the max-sum algorithm. In IJCAI (pp. 299–304).

 47. Sultanik, E. A., Lass, R. N., & Regli, W. C. (2008). DCOPolis: A framework for simulating and
deploying distributed constraint reasoning algorithms. In AAMAS (pp. 1667–1668).

 48. Tarlow, D., Givoni, I., & Zemel, R. (2010). HOP-MAP: Efficient message passing with high order
potentials. In AISTAT (pp. 812–819).

 49. Vinyals, M., Rodriguez-Aguilar, J.A., & Cerquides, J. (2009). Generalizing DPOP: Action-GDL, a
new complete algorithm for DCOPs. In AAMAS (pp. 1239–1240).

 Autonomous Agents and Multi-Agent Systems (2021) 35:24

1 3

 24 Page 40 of 40

 50. Weiss, Y., & Freeman, W. T. (2001). On the optimality of solutions of the max-product belief-propaga-
tion algorithm in arbitrary graphs. IEEE Transactions on Information Theory, 47(2), 736–744.

 51. Yeoh, W., Felner, A., & Koenig, S. (2010). BnB-ADOPT: An asynchronous branch-and-bound DCOP
algorithm. Journal of Artificial Intelligence Research, 38, 85–133.

 52. Yokoo, M., Durfee, E. H., Ishida, T., & Kuwabara, K. (1998). The distributed constraint satisfaction
problem: Formalization and algorithms. IEEE Transactions on knowledge and data engineering, 10(5),
673–685.

 53. Zhang, W., Wang, G., Xing, Z., & Wittenburg, L. (2005). Distributed stochastic search and distributed
breakout: Properties, comparison and applications to constraint optimization problems in sensor net-
works. Artificial Intelligence, 161(1–2), 55–87.

 54. Zivan, R., Lev, O., & Galiki, R. (2020). Beyond trees: Analysis and convergence of belief propagation
in graphs with multiple cycles. In AAAI (pp. 7333–7340).

 55. Zivan, R., Okamoto, S., & Peled, H. (2014). Explorative anytime local search for distributed constraint
optimization. Artificial Intelligence, 212, 1–26.

 56. Zivan, R., Parash, T., Cohen, L., Peled, H., & Okamoto, S. (2017). Balancing exploration and exploita-
tion in incomplete min/max-sum inference for distributed constraint optimization. Autonomous Agents
and Multi-Agent Systems, 31(5), 1165–1207.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Utility distribution matters: enabling fast belief propagation for multi-agent optimization with dense local utility function
	Abstract
	1 Introduction
	2 Related work
	3 Backgrounds
	3.1 Distributed constraint optimization problems
	3.2 Max-sum
	3.3 Generic domain pruning
	3.4 Function decomposing and state pruning
	3.5 Search trees

	4 Motivation
	5 Dynamic domain pruning techniques
	5.1 GDP
	5.2 ST-GDP
	5.3 Discretization mechanism
	5.4 Discussion

	6 Partial tree-sorting scheme
	6.1 Motivation
	6.2 K-depth partial tree-sorting scheme
	6.3 Sorting criteria
	6.4 Built-in termination detection mechanism

	7 Empirical evaluations
	7.1 Experimental configurations
	7.2 Evaluations of dynamic domain pruning techniques
	7.3 Evaluations of partial tree-sorting scheme variants

	8 Conclusion
	Acknowledgements
	References

