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Abstract Asymmetric Distributed Constraint Optimization Problems (AD-
COPs) are an important framework for multiagent coordination and opti-
mization, where each agent has its personal preferences. However, the existing
inference-based complete algorithms that use local eliminations cannot be ap-
plied to ADCOPs, as the (pseudo) parents are required to transfer their private
functions to their (pseudo) children to perform the local eliminations optimally.
Rather than disclosing private functions explicitly to facilitate local elimina-
tions, we solve the problem by enforcing delayed eliminations and propose the
first inference-based complete algorithm for ADCOPs, named AsymDPOP.
To solve the severe scalability problems incurred by delayed eliminations, we
propose to reduce the memory consumption by propagating a set of smaller
utility tables instead of a joint utility table, and the computation efforts by
sequential eliminations instead of joint eliminations. To ensure the proposed
algorithms can scale up to large-scale problems under the limited memory,
we combine them with the memory-bounded inference by iteratively propa-
gating the memory-bounded utility tables with the instantiation of cycle-cut
(CC) nodes, where we propose to reduce the redundancy in bounded utility
iterative propagation by enumerating CC nodes in different branches indepen-
dently and propagating the utility tables within the memory limit only once.
The empirical evaluation indicates that the proposed methods significantly
outperform the state-of-the-art as well as the vanilla DPOP with PEAV for-
mulation.

This paper is an extension of our IJCAI paper (Deng et al., 2019). Besides an extended de-
scription, examples, complete proofs, it includes two adaptations of the proposed algorithms
to the memory-bounded inference, which were not included in the IJCAI version.
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1 Introduction

Distributed Constraint Optimization Problems (DCOPs) (Modi et al., 2005;
Yeoh and Yokoo, 2012; Fioretto et al., 2018) are a fundamental framework for
multiagent system where multiple agents coordinate their decisions to optimize
a global objective. DCOPs have been successfully applied to model a variety of
real-world problems where information and controls are inherently distributed
among agents, such as frequency allocation (Monteiro et al., 2012), distributed
scheduling (Sultanik et al., 2007; Hirayama et al., 2019), smart grid (Fioretto
et al., 2017) and many others.

Algorithms for DCOP can be classified into two categories, i.e., incom-
plete algorithms and complete algorithms. Incomplete algorithms for DCOPs
focus on finding near-optimal solutions at small coordination overheads, and
generally follow three main strategies, i.e., local search (Maheswaran et al.,
2004a; Hirayama and Yokoo, 2005; Zhang et al., 2005; Okamoto et al., 2016;
Hoang et al., 2018; Leite and Enembreck, 2019), inference (Farinelli et al.,
2008; Rogers et al., 2011; Zivan et al., 2017; Chen et al., 2018; Cohen et al.,
2020; Zivan et al., 2020a) and sampling (Ottens et al., 2017; Nguyen et al.,
2019). In contrast, complete algorithms aim to find the optimal solution and
are roughly divided into search-based algorithms and inference-based algo-
rithms. Search-based complete algorithms (Hirayama and Yokoo, 1997; Modi
et al., 2005; Gershman et al., 2009; Yeoh et al., 2010; Netzer et al., 2012; Litov
and Meisels, 2017; Chen et al., 2020b) systematically explore the entire solu-
tion space by distributed backtrack search. Instead, inference-based complete
algorithms (Petcu and Faltings, 2005b; Vinyals et al., 2011) employ a dynamic
programming paradigm to solve DCOPs.

Unfortunately, DCOPs fail to capture the asymmetric structure which is
ubiquitous in real-world problems (Burke et al., 2007; Maheswaran et al.,
2004b; Ramchurn et al., 2011) since each constrained agent shares the same
payoffs. PEAV (Private Events As Variables) (Maheswaran et al., 2004b) at-
tempts to capture asymmetric constraint costs by introducing mirror variables
and the consistency enforced by hard constraints. However, PEAV suffers from
scalability problems since the number of variables significantly increases. More-
over, many classical DCOP algorithms perform poorly when applied to the
formulation due to the presence of hard constraints (Grinshpoun et al., 2013).
On the other side, ADCOPs (Grinshpoun et al., 2013) are another frame-
work that captures asymmetry by explicitly defining the exact payoff for each
participant of a constraint without introducing any variables, which has been
intensively investigated in recent years.

Solving ADCOPs involves evaluating and aggregating the payoff for each
constrained agent, which is more challenging in asymmetric settings due to a
privacy concern. Complete algorithms for ADCOP (Grinshpoun et al., 2013;
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Litov and Meisels, 2017) are nearly the variants of search-based complete
DCOP solvers with consideration of the aggregation for two-side constraint
costs. Namely, they rely on an exhaustive search to guarantee the optimality,
which incurs exponential messages. On the other hand, although inference-
based complete algorithms (e.g., DPOP (Petcu and Faltings, 2005b)) only
require a linear number of messages of exponential size with respect to the
induced width to solve DCOPs, they cannot be directly applied to solve AD-
COPs without PEAV due to their requirement for complete knowledge of each
constraint to facilitate variable eliminations. Accordingly, (pseudo) parents
have to transfer their private constraint functions to their (pseudo) children,
which leaks at least half of privacy.

To address the above issues, in this paper, we accommodate DPOP to AD-
COPs for the first time by deferring the eliminations of variables. Specifically,
we contribute to the state-of-the-art in the following aspects.

– We propose the first inference-based complete algorithm to solve ADCOPs,
named AsymDPOP, via generalizing non-local elimination (Chen et al.,
2020a). That is, for eliminating the variables optimally, the eliminations
are postponed until their highest (pseudo) parent to void (pseudo) parents’
private functions being exposed directly, so as to protect privacy through
the solving process. Besides, we theoretically show that the space complex-
ity of an agent in AsymDPOP.

– We scale up AsymDPOP by introducing a table-set propagation scheme
(TSPS) to reduce memory consumption by discarding the unnecessary joint
operations in the utility table calculation, and a mini-batch elimination
scheme (MBES) to reduce the number of operations by distributing the
elimination operators over each eliminated variable set. Moreover, we the-
oretically show that the memory consumption of AsymDPOP with TSPS
is no greater than the one of AsymDPOP.

– To improve the scalability of AsymDPOP within the limited memory, we
present RMB-AsymDPOP by combining the memory-bounded inference
with AsymDPOP, where we propose to enumerate cycle-cut (CC) nodes
in different branches independently instead of jointly to reduce the redun-
dancy in the enumeration of CC nodes. Furthermore, we enhance RMB-
AsymDPOP by combining it with TSPS, and propose to propagate the
utility tables within the memory limit only once rather than iteratively to
reduce the redundancy in the utility set propagation.

– We experimentally evaluate the proposed algorithms on various bench-
marks. The experimental results show that the proposed algorithms are
scalable and significantly outperform the state-of-the-art as well as the
vanilla DPOP with PEAV formulation.

To sum up, we propose four inference-based complete algorithms (i.e, AsymD-
POP and its variants) for ADCOPs. The relationship between them, as well
as their relationship to existing inference-based complete DCOP algorithms
including DPOP and its memory-bounded version (i.e., RMB-DPOP), can be
found in Fig. ??. The rest of this paper is organized as follows. We briefly
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Fig. 1: The relation diagram of the proposed methods

review related work in Sect. 2. The preliminaries including DCOPs, ADCOPs,
pseudo tree, DPOP, non-local elimination, MB-DPOP and RMB-DPOP are
presented in Sect. 3. In Sect. 4, we describe the proposed inference-based
complete algorithm for ADCOPs, named AsymDPOP. Then, we present two
tradeoffs of AsymDPOP in Sect. 5 and its memory-bounded versions in Sect.
6. Next, a discussion about the privacy of the proposed methods is provided
in Sect. 7. Finally, we present the empirical evaluation of our algorithms in
Sect. 8 and the conclusion in Sect. 9.

2 Related work

Incomplete algorithms for DCOPs are broadly categorized into local search,
inference-based and sampling-based algorithms. Local search algorithms in-
cluding DBA (Hirayama and Yokoo, 2005), DSA (Zhang et al., 2005), MGM
(Maheswaran et al., 2004a) and GDBA (Okamoto et al., 2016) are typical
incomplete DCOP algorithms, where each agent keeps exchanging itself state
with its neighbors and optimizes individual benefit in terms of the latest states
of its neighbors. Inference-based incomplete algorithms like Max-sum (Farinelli
et al., 2008) and its variants (Rogers et al., 2011; Zivan et al., 2017; Chen
et al., 2018; Cohen et al., 2020; Zivan et al., 2020a) gather the global infor-
mation through employing belief propagation on a factor-graph (Kschischang
et al., 2001). Sampling-based algorithms including DUCT (Ottens et al., 2017)
and D-Gibbs (Nguyen et al., 2019) sample the search space on a pseudo tree
through the confidence bounds or the statistical inference.

Complete algorithms for DCOPs are classified as search-based or inference-
based algorithms. SyncBB (Hirayama and Yokoo, 1997) is an early search-
based algorithm built on a chain-based structure, but it incurs an unnecessary
waste of computing resources due to the synchronous execution. To achieve
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better concurrency, AFB (Gershman et al., 2009) and ConcFB (Netzer et al.,
2012) were proposed. Since the algorithms with the chain-based structure could
force unconstrained agents to communicate with each other and disallow par-
allel exploration of the solution space, a pseudo tree (Freuder and Quinn,
1985) is used to create communication links among constrained agents and
parallelize the computation in different independent branches. ADOPT (Modi
et al., 2005) is a representative asynchronous search-based algorithm operat-
ing on a pseudo tree and using a best-first search strategy. Afterward, many
search algorithms based on ADOPT (Silaghi and Yokoo, 2006, 2009; Gutier-
rez and Meseguer, 2010) thrive. To improve the search efficiency of ADOPT,
BnB-ADOPT (Yeoh et al., 2010) and its variants (Gutierrez and Meseguer,
2010; Gutierrez et al., 2013) employ depth-first search and branch-and-bound
strategies instead. Different from ADOPT and BnB-ADOPT, PT-FB (Litov
and Meisels, 2017) is a synchronous search-based algorithm that constructs
lower bounds to speed up the search by performing forward bounding on a
pseudo tree. Subsequently, HS-CAI (Chen et al., 2020b) was proposed to build
tight lower bounds through executing context-based inference iteratively.

DPOP (Petcu and Faltings, 2005b) is a famous inference-based algorithm
for DCOPs, which performs a dynamic programming strategy. In DPOP, the
assignment combination utilities are forwarded bottom-up, and then the op-
timal decisions are propagated along the pseudo tree reversely. However, its
memory consumption is exponential in the induced width of the pseudo tree.
Therefore, ODPOP (Petcu and Faltings, 2006), MB-DPOP (Petcu and Falt-
ings, 2007) and RMB-DPOP (Chen et al., 2020d) were proposed to trade
the number of messages for smaller memory consumption. In addition, Ac-
tion GDL (Vinyals et al., 2011) was proposed to enhance the efficiency by
performing dynamic programming on a distributed junction tree.

Existing algorithms for solving ADCOPs are almost the adaption of the
DCOP algorithms by handling asymmetric constraint costs. Local search al-
gorithms for ADCOPs including ACLS, MCS-MGM and GCA-MGM (Grin-
shpoun et al., 2013) are the asymmetric extensions of DSA and MGM, where
each agent exchanges itself state with its neighbors and each constraint cost
on its side with the neighbors that participate in the same constraint. Besides,
Zivan et al. (Zivan et al., 2020b) proposed to adjust Max-sum and its variants
to solve ADCOPs via formulating asymmetric factor-graphs.

Search-based complete algorithms for ADCOPs employ either a two-phase
strategy or a one-phase strategy to aggregate double-side constraint costs.
Specifically, the algorithms with a two-phase strategy first consider one-side
constraint costs in the first phase and then gather the other side constraint
costs in the second phase when reaching a complete assignment. While the
algorithms with a one-phase strategy systematically check each side of the
constraint costs before reaching a full assignment. SyncABB-2ph (Grinshpoun
et al., 2013) is an asymmetric version of SyncBB with a two-phase strategy.
Instead, SyncABB-1ph and ATWB (Grinshpoun et al., 2013) are asymmet-
ric adaptations of SyncBB (Hirayama and Yokoo, 1997) and AFB (Gershman
et al., 2009), using a one-phase strategy. To implement the one-phase check,
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SyncABB-1ph uses a sequence of back checking processes while ATWB per-
forms backward bounding. As the asymmetric adaptation of PT-FB, AsymPT-
FB (Litov and Meisels, 2017) is the first tree-based algorithm for ADCOPs,
which uses forward bounding to compute lower bounds and back bounding
to achieve a one-phase check. Recently, PT-ISABB (Chen et al., 2020a) was
proposed to improve a tree-based search process by implementing a non-local
elimination version of ADPOP (Petcu and Faltings, 2005a) to provide much
tighter lower bounds.

3 Background

In this section, we introduce the preliminaries including DCOPs, ADCOPs,
pseudo tree, DPOP, non-local elimination, MB-DPOP and RMB-DPOP.

3.1 Distributed constraint optimization problems

A distributed constraint optimization problem (DCOP) (Modi et al., 2005)
can be defined by a tuple 〈A,X,D, F 〉 such that:

– A = {a1, . . . , aq} is a set of agents.
– X = {x1, . . . , xn} is a set of variables. Each variable xi is only controlled

by a single agent.
– D = {D1, . . . , Dn} is a set of finite variable domains. Each domain Di ∈ D

consists of a set of finite allowable values for variable xi ∈ X. Besides, we
denote the maximal domain size as d = maxxi∈X |Di|.

– F = {f1, . . . , fm} is a set of constraint functions. Each function fi :
Di1 × · · · ×Dik → R≥0 ∪ {∞} specifies a non-negative cost to each value
combination of the involved variables xi1 , . . . , xik . Here, the constraints of
an infinite cost are called hard constraints which represent the combina-
tions of assignment that are strictly forbidden, and the constraints of a
finite cost are called soft constraints.

For the sake of simplicity, we assume that each agent only controls a single
variable (i.e., q = n) and all constraints are binary (i.e., fij : Di × Dj →
R≥0 ∪ {∞}). Thus, the term agent and variable can be used interchangeably.
These assumptions are commonly used in the DCOP literature (Litov and
Meisels, 2017; Modi et al., 2005; Petcu and Faltings, 2005b; Yeoh et al., 2010).
The objective of a DCOP is to find a joint assignment to all variables such
that the total cost is minimized. That is,

X∗ = arg min
di∈Di,dj∈Dj

∑
fij∈F

fij(xi = di, xj = dj)
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Fig. 2: An ADCOP with two variables
and a constraint

 

Fig. 3: Pseudo tree

3.2 Asymmetric distributed constraint optimization problems

While DCOPs assume an equal cost for each participant of each constraint,
Asymmetric Distributed Constraint Optimization Problems (ADCOPs) (Grin-
shpoun et al., 2013) explicitly define the exact cost for each constrained agent.

In other words, a constraint function fi : Di1×· · ·×Dik →
∏k

j=1 (R≥0 ∪ {∞})
in an ADCOP specifies a cost vector for each possible combination of involved
variables. Following the assumptions in a DCOP, we also assume that each
agent only controls a single variable and all the constraints are binary in an
ADCOP. Therefore, an ADCOP can also be visualized by a constraint graph,
where the vertexes denote variables and the edges denote constraints. Figure
2 presents an ADCOP with two variables xi and xj and a binary constraint
between them, where the private constraint functions for xi and xj are de-
noted as fij and fji, respectively. Note that in the asymmetric setting, fij
does not necessarily equal fji. The objective of an ADCOP is to find a joint
assignment to all variables such that the aggregated constraint costs of each
side are minimized. That is,

X∗ = arg min
di∈Di,dj∈Dj

∑
fij ,fji∈F

fij(xi = di, xj = dj) + fji(xj = dj , xi = di)

3.3 Pseudo tree

A pseudo tree (Freuder and Quinn, 1985) is an ordered arrangement of a con-
straint graph with the property that adjacent nodes from the original graph
fall in the same branch of the tree, which is widely used to establish a commu-
nication structure and organize the solution space. A pseudo tree can be gen-
erated by a depth-first traversal of a constraint graph, categorizing constraints
into tree edges and back edges (i.e., non-tree edges). Given a pseudo tree, the
neighbors of a variable xi (i.e., N(xi), the variables who share constraints with
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xi) can be categorized into its parent P (xi), pseudo parents PP (xi), children
C(xi) and pseudo children PC(xi) according to their positions in the pseudo
tree and the type of edges they connect through. Concretely, these notations
can be formally defined by:

– P (xi) is an ancestor connecting with xi through a tree edge.
– PP (xi) is the set of ancestors connecting with xi through back edges.
– C(xi) is the set of descendants that connect with xi through tree edges.
– PC(xi) is the set of descendants that connect with xi through back edges.

We also adopt the following notations for succinctness.

– AP (xi) is the set of xi’s ancestors connecting with xi, i.e., AP (xi) =
PP (xi) ∪ {P (xi)}.

– AC(xi) is the set of xi’s descendants connecting with xi, i.e., AC(xi) =
PC(xi) ∪ C(xi).

– Desc(xi) is the set of descendants of xi.
– Anc(xi) is the set of ancestors of xi.
– Bc

i is the subset of AC(xi) that belongs to Desc(xc) ∪ {xc}, i.e., Bc
i =

AC(xi) ∩ (Desc(xc) ∪ {xc}).
– Sep(xi) (Petcu and Faltings, 2006) is the separator set of xi, comprising the

ancestors that are constrained with the variables in {xi} ∪Desc(xi), i.e.,
Sep(xi) = {xj ∈ Anc(xi)|∃xk ∈ {xi} ∪Desc(xi), s.t., xj ∈ AP (xk)}. It can
also be defined recursively as Sep(xi) = AP (xi)∪(∪xc∈C(xi)Sep(xc))\{xi}.
Besides, we denote the induced width of xi as |Sep(xi)| and the induced
width of the pseudo tree as w∗ = maxxi∈X |Sep(xi)|.
Figure 3 presents a pseudo tree where the solid edges and the dashed

edges are tree edges and back edges, respectively. In the pseudo tree, x2’s
neighbors (i.e., N(x2) = {x1, x3, x4}) are classified into P (x2) = x1, PP (x2) =
∅, C(x2) = {x3, x4}, PC(x2) = ∅. Accordingly, AP (x2) = {x1} and AC(x2) =
{x3, x4}. Besides, we have Desc(x2) = {x3, x4} and Anc(x2) = {x1}. Since
Desc(x3) = Desc(x4) = ∅, we have B3

2 = {x3} and B4
2 = {x4}. Particularly,

since x1 is constrained with both x2 and x3, we have Sep(x2) = {x1}. And we
have w∗ = 2 since |Sep(x1)| = 0, |Sep(x2)| = |Sep(x4)| = 1 and |Sep(x3)| = 2.

3.4 DPOP and non-local elimination

DPOP is an important inference-based complete algorithm for DCOPs, which
implements the distributed bucket elimination scheme (Dechter et al., 2003)
in a distributed manner. It performs two phases of propagation on a pseudo
tree: a utility propagation phase to eliminate local variables and propagate
utility tables from bottom to top, and a value propagation phase to select the
optimal value for each variable along the pseudo tree reversely. Formally, the
related operations of functions (e.g., constraint functions or utility tables) can
be defined as follows.

Definition 1 (dims) Let f be a function, then f.dims is its dimensions, i.e.,
the variables involved in f .
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Definition 2 (Slice) Let P be a set of key-value pairs. P[K] is a slice of P
over K such that:

P[K] = {(k, v) ∈ P |∀k ∈ K}

Definition 3 (Join (Petcu and Faltings, 2005a)) Let f , f ′ be two func-
tions and Df = Πxi∈f.dimsDi,Df ′ = Πxi∈f ′.dimsDi be their domain spaces.
f ⊗ f ′ is the join of f and f ′ over Df⊗f ′ = Πxi∈f.dims∪f ′.dimsDi such that:

(f⊗f ′)(p) = f(p[f.dims])+f ′(p[f ′.dims]),∀p ∈ {((f⊗f ′).dims, V )|∀V ∈ Df⊗f ′}

Definition 4 (Elimination (Petcu and Faltings, 2005a)) Let f be a
function and S be a subset of the dimensions to f (i.e., S ⊂ f.dims). f ′ =
minS f is the minimal elimination of f along the S axis respectively, i.e.,

f ′(p) = min
ps∈{(S,V )|∀V ∈DS}

f (p ∪ ps) ,∀p ∈ {(f ′.dims, V )|∀V ∈ Df ′}

where DS = Πxi∈SDi. For succinctness, we denote min{xi} f as minxi
f .

Taking functions fij and fji in Fig. (2) as an example, we have the dimen-
sions of fij is fij .dims = {xi, xj}, the join of fij and fji (i.e., (fij ⊗ fji)) and
the elimination of fij along xj (i.e., minxjfij) can be computed by:
(fij ⊗ fji)(xi = di, xj = dj) = fij(xi = di, xj = dj) + fji(xj = dj , xi = di),∀di, dj ∈ {0, 1},
(minxj

fij)(xi = di) = min{fij(xi = di, xj = 0), fij(xi = di, xj = 1)},∀di ∈ {0, 1}
Specifically, during the utility propagation phase, each variable xi joins its

local constraint functions related to AP (xi) with its received utility tables.
Afterward, it eliminates its dimension from the joint utility table by comput-
ing the optimal value for each assignment combination of Sep(xi), and then
propagates the eliminated result ui→p to its parent. That is,

ui→p = min
xi

 ⊗
xj∈AP (xi)

fij

⊗
 ⊗

xc∈C(xi)

uc→i


where uc→i is the utility table received from its child xc ∈ C(xi).

In the value propagation phase, xi determines its optimal assignment d∗i
based on the received utility tables uc→i,∀xc ∈ C(xi) and the optimal assign-
ment PA∗ received from its parent. That is,

d∗i = arg min
xi

 ∑
xj∈AP (xi)

fij(PA
∗
[xj ]

) +
∑

xc∈C(xi)

uc→i(PA
∗
[uc→i.dims])


Then, it extends PA∗ with its optimal assignment and forwards the extended
assignment to its children. It is noteworthy that the assignment sent to its
child xc ∈ C(xi) is PA∗[Sep(xc)]

∪ {(xi, d∗i )}.
However, DPOP cannot be directly applied to asymmetric settings. That is

because the total knowledge of each constraint function related to the variable
should be aggregated for eliminating that variable optimally. Recently, PT-
ISABB (Chen et al., 2020a) was proposed to apply an approximated version of
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DPOP (i.e., ADPOP) to solve an ADCOP. Specifically, the algorithm performs
variable eliminations only to a subset of constraints to build lookup tables for
lower bounds, and then uses a tree-based search to find the optimal solution.
It further proposed to reinforce the bounds by a non-local elimination scheme.
That is, instead of performing variable eliminations locally, the elimination of
a variable is postponed to its parent to include the private function enforced
in its parent’s side and promote the integrity of the utility table.

3.5 MB-DPOP and RMB-DPOP

Although DPOP only requires a linear number of messages to solve a DCOP,
its maximal message size is exponential in the induced width of the pseudo
tree, which prohibits it from solving problems with the large induced width.
Consider the scenario where 8 agents with the domain size of 10 are fully-
constrained. DPOP would require nearly 400MB of memory to perform vari-
able elimination, which is impractical for typical DCOP applications (e.g.,
coordinating low-powered embedded devices). However, these problems can
be solved by the search-based DCOP algorithms (e.g., PT-FB).

Subsequently, MB-DPOP (Petcu and Faltings, 2007), a memory-bounded
algorithm (i.e., the algorithm with the maximal message below the user-
specified memory budget kmb in dimension size) was proposed to trade the
number of messages for smaller memory consumption by using the cycle-cut
idea (Dechter et al., 2003). To implement the cycle-cut idea, MB-DPOP intro-
duces two additional phases, including a labeling phase and a bounded utility
propagation phase. The labeling phase is used to group the variables with the
induced width higher than kmb into clusters, and determine cycle-cut (CC)
nodes such that the width of each cluster is no greater than kmb once CC
nodes are removed. While the bounded utility propagation phase is imple-
mented to iteratively propagate the utility tables with some dimensions fixed
by the instantiation of CC nodes. Formally, a cluster and the CC nodes of that
cluster can be defined by:

Definition 5 (Cluster node) Given a pseudo tree and a value of kmb, a
variable xi in the pseudo tree is called a cluster node if |Sep(xi)| > kmb.

Definition 6 (Cluster root (CR) node) Given a pseudo tree and a value
of kmb, a variable xi in the pseudo tree is called cluster root node if ∃xc ∈
C(xi), s.t., |Sep(xc)| > kmb and |Sep(xi)| ≤ kmb.

Definition 7 (Cluster of width greater than kmb) Given a pseudo tree
and a value of kmb, a cluster Cr of width greater than kmb is a set of nodes
that are all labeled as cluster node or cluster root node, and there is a tree
path between any two nodes in Cr that go only through cluster nodes in Cr.

Definition 8 (Cycle-cut (CC) nodes of a cluster) The cycle-cut (CC)
nodes of a cluster Cr (i.e., CClistr) is a subset of ∪xi∈Cr

Sep(xi) such that for
each variable xi ∈ Cr we have |Sep (xi) \CClistr| ≤ kmb.
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Specifically, for a cluster Cr, the CC nodes for Cr (i.e., CClistr) are se-
lected and aggregated in a bottom-up fashion during the labeling phase. In the
bounded utility propagation phase, the CR node enumerates the instantiation
of CClistr and propagates the instantiation iteratively to the nodes in Cr.
Then, these nodes condition their utility tables on the received instantiation,
and then forward these bounded utility tables to their parents. After exhaust-
ing all the instantiations of CClistr, the CR node eliminates its dimension
and also propagates its utility table to its parent.

For the nodes outside the clusters, they execute canonical utility propa-
gation. After the bounded utility propagation and utility propagation phases
end, a value propagation phase starts. Different from DPOP which only re-
quires a round of utility propagation, the cluster nodes in MB-DPOP require
an additional bounded utility propagation to re-drive the bounded utilities
corresponding to the instantiation of CC nodes to obtain the optimal assign-
ment. That is because each cluster node in the cluster only caches the utility
table for the latest instantiation of CC nodes.

However, MB-DPOP suffers from a severe redundancy in memory-bounded
inference, as it does not exploit the structure of a problem. Thus, three mech-
anisms including a distributed enumeration mechanism (DEM), an iterative
selection mechanism (ISM) and a caching mechanism (CACHE) were pro-
posed in RMB-DPOP (Chen et al., 2020d). Among them, DEM is adopted
in each cluster to perform asynchronous memory-bounded inference by fac-
torizing the instantiation. Specifically, for a cluster Cr that has CC nodes of
CClistr, instead of enumerating CClistr only at the CR node in MB-DPOP,
the cluster nodes are eligible to enumerate CClistr in DEM. Namely, the CC
nodes enumerated at xi ∈ Cr (i.e., CCi) in DEM can be defined by:

CCi =

{
CClistr ∩ (Sep(xi) ∪ {xi}) xi is a CR node

{xi} ∩ CClistr otherwise
(1)

ISM refines the CC node selection such that the number of CC nodes can
be reduced. Concretely, for a cluster Cr, instead of determining CClistr in
a bottom-up fashion by all the cluster nodes in MB-DPOP, each CC node
in CClistr is determined iteratively only by the CR node in ISM such that
it can cover a maximum number of the active nodes (i.e., the cluster nodes
whose induced width is still greater than kmb once the selected CC nodes are
removed). And CACHE utilizes the historical inference results to further avoid
unnecessary inferences.

4 AsymDPOP

In this section, we present a privacy-protecting inference-based complete al-
gorithm for ADCOP, named AsymDPOP. We describe the motivation of the
proposed algorithm in Sect. 4.1, and then elaborate on its utility propaga-
tion and value propagation phases in Sect. 4.2 and 4.3, respectively. Finally, a
complexity analysis of AsymDPOP is provided in Sect. 4.4.
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4.1 Motivation

The existing complete algorithms for ADCOPs are unsuitable for large-scale
applications, since they require exponential messages to systematic search the
solution space. In fact, these search-based complete algorithms cannot solve
the random sensor networks with more than 16 sensors and the domain size
of 8, as shown in the experimental results of Sect. 8.4.

On the other hand, inference-based complete algorithms (e.g., DPOP)
which use local eliminations can solve DCOPs with only a linear number of
messages. Unfortunately, they are not applicable for handling ADCOPs with-
out PEAV since they require the total knowledge of each constraint to perform
variable eliminations optimally. Concretely, when applying DPOP to solve a
DCOP, once all the UTIL messages from its children have arrived, a variable
can be eliminated locally without loss of completeness since all the functions
related to it have been aggregated. However, this conclusion does not hold for
ADCOPs as the functions related to the eliminated variable contain two-side
private functions (i.e., the private functions on its side and the ones on its
(pseudo) parents’ side). As a result, the local elimination to a variable does
not ensure the completeness without consideration of the private functions on
its (pseudo) parents’ sides.

Taking Fig. 3 as an example, since the private functions f13 and f23 are held
by x1 and x2, respectively, x3 has no knowledge about them when performing
the local elimination. Actually, the functions involving x3 include f13, f23, f32
and f31. Thus, eliminating x3 locally could lead to overestimated bias and
offer no guarantee on the completeness. A näıve solution can be that (pseudo)
parents transfer their private functions to their (pseudo) children to facilitate
the local variable eliminations (e.g., x1 and x2 forward f13 and f23 to x3 to
eliminate x3 locally), but this would incur an unacceptable loss of privacy.

To address the aforementioned issues, we propose the first complete in-
ference algorithm for ADCOPs, named AsymDPOP. Next, we will detail the
privacy-protecting utility propagation and the corresponding value propaga-
tion phases of AsymDPOP, respectively.

4.2 Utility propagation phase

As mentioned in Sect. 4.1, in the asymmetric setting, the local elimination to
a variable does not ensure the completeness as the private functions on its
(pseudo) parents’ sides cannot be considered. On the other hand, the non-
local elimination (Chen et al., 2020c) that defers the elimination to a variable
at its parent also does not ensure the completeness since only the private
function on its parent side is included. Therefore, we propose to postpone the
elimination of a variable to its highest (pseudo) parent to aggregate all the
private functions on its (pseudo) parents’ sides, and name this elimination
scheme as generalized non-local elimination (GNLE). Thus, a variable xi in
GNLE is responsible for eliminating the set of variables EVi whose highest
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Algorithm 1: Utility Propagation Phase in AsymDPOP (GNLE) for xi

When Initialization:
1 if xi is a leaf then
2 PropUtil()

When received UTIL(uc) from xc ∈ C(xi):
3 uc→i ← uc

4 if xi has received all UTIL from C(xi) then
5 if xi is the root then
6 start Value propagation phase
7 else
8 PropUtil()

Function PropUtil():
9 compute ui→p by Eq. (6)

10 send UTIL(ui→p) to P (xi)

(pseudo) parent is xi. Formally,

EVi = {xj ∈ AC(xi)|xk /∈ AP (xj),∀xk ∈ Sep(xi)} (2)

That is, a (pseudo) child xj of xi is eliminated at xi if there is no (pseudo)
parent of xj ordered above xi. Therefore, each variable in EVi can be opti-
mally eliminated from the aggregated utility table of xi (i.e., ui) since all the
functions involving it have been aggregated. Here, ui is the join of the local
private functions of xi and the received utility tables uc→i,∀xc ∈ C(xi), i.e.,

ui =

 ⊗
xj∈N(xi)

fij

⊗
 ⊗

xc∈C(xi)

uc→i


Then, the utility table forwarded to its parent ui→p can be obtained by:

ui→p = min
EVi

ui (3)

Since ui→p is a summation of multiple utility tables (according to Eq. (3)),
Anc(xi) can hardly infer the private functions of xi from ui→p even though xi
does not eliminate its dimension (see Sect. 7 for a detailed analysis).

However, computing ui→p by Eq. (3) incurs huge computational overhead,
i.e., O(d|UDi∪EVi|), where UDi = ui→p.dims. In fact, since AP (xi) ∩EVi = ∅
(according to Eq. (2)) and AP (xi) ∪ AC(xi) = N(xi), the private functions
of xi related to AP (xi) can be moved to the outside of the min operation
to optimize Eq. (3), which results in a significant reduction in computational
overhead. That is,

ui→p =

 ⊗
xj∈AP (xi)

fij

⊗min
EVi

 ⊗
xj∈AC(xi)

fij

⊗
 ⊗

xc∈C(xi)

uc→i

 (4)

By this means, the time complexity is dominated by the maximum overhead
of computing the local joint utility table (i.e., O(d|UDi|) or the elimination of
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all the received utility tables (i.e., O(d|∪xc∈C(xi)
UDc|)). Therefore, Eq. (4) is a

more efficient implementation for Eq. (3) except the case that EVi = ∅.
Besides, EVi can be divided into multiple disjoint subsets since the different

branches are independent of each other in a pseudo tree. That is, EVi can be
partitioned into EV c

i = EVi∩Bc
i ,∀xc ∈ C(xi), such that EVi = ∪xc∈C(xi)EV

c
i

and EV c
i ∩ EV c′

i = ∅,∀xc, xc′ ∈ C(xi), c 6= c′.1 Formally,

EV c
i = {xj ∈ Bc

i |xk /∈ AP (xj),∀xk ∈ Sep(xi)} (5)

Accordingly, Eq. (3) can be further optimized by eliminating EV c
i indepen-

dently in different branches. That is,

ui→p =

 ⊗
xj∈AP (xi)

fij

⊗
 ⊗

xc∈C(xi)

uci→p

 (6)

where uci→p is the component of ui→p regarding xc, i.e.,

uci→p = min
EV c

i

 ⊗
xj∈Bc

i

fij

⊗ uc→i

 (7)

The time complexity of Eq. (6) is dominated by the maximum overhead of
computing the local joint utility table (i.e., O(d|UDi|)) or the elimination of
each received utility table (i.e., O(dmaxxc∈C(xi)

|UDc|)), which is no greater than
the one of Eq. (4) except the case that EVi = ∅.

Algorithm 1 presents the sketch of the utility propagation phase of AsymD-
POP (GNLE)2. The algorithm begins with leaf variables sending their utility
tables computed by Eq. (6) to their parents via UTIL messages (line 1-2, 9-
10). When receives a UTIL message from its child xc ∈ C(xi), xi stores the
received utility table (line 3). Once all the UTIL messages from its children
have arrived, xi computes and propagates the utility table ui→p to its parent
if it is not the root (line 7-8, 9-10). Otherwise, the value propagation phase
starts (line 5-6).

4.3 Value propagation phase

Contrary to the one in vanilla DPOP which determines the optimal assignment
locally for each eliminated variable, the value propagation phase in AsymD-
POP is specialized to accommodate GNLE. Specifically, since a variable xi has

1 It is noteworthy that computing EV c
i does not require variables to exchange their rela-

tive positions in a pseudo tree. Specifically, each variable is associated with a counter which
is initially set to the number of its (pseudo) parents. Then, the counter of a variable is prop-
agated to its (pseudo) parents via UTIL messages. When its (pseudo) parent xi receives
the UTIL message containing it from xc ∈ C(xi), the variable’s counter decreases. Once its
counter equals zero, that variable is added to EV c

i .
2 An example for AsymDPOP can be found in Appendix A.1.
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Algorithm 2: Value Propagation in AsymDPOP for xi

When Initialization:
11 if xi is the root then
12 compute ui by Eq. (6)
13 v∗

i ← argminxi
ui

14 PropValue({(xi = v∗
i )})

When received VALUE(PA∗) from P (xi):
15 PropValue(PA∗)

Function PropValue(PA∗):
16 foreach xc ∈ C(xi) do
17 PAc

i ← PA∗
[Sep(xc)∪{xc}∪IDc]

18 if EV c
i ̸= ∅ then

19 compute V c∗
i for EV c

i by Eq. (8)
20 PAc

i ← PAc
i ∪ {(xj = V c∗

i[xj ]
)|∀xj ∈ EV c

i }
21 send VALUE(PAc

i ) to xc

eliminated all the variables in EV c
i ,∀xc ∈ C(xi) during the utility propaga-

tion, it is responsible for selecting the optimal assignment to these eliminated
variables. The optimal assignment to EV c

i can be determined by the optimal
assignment PA∗ received from its parent and the received utility table uc→i.
That is,

Xc∗
i = arg min

EV c
i

 ⊗
xj∈Bc

i

fij(PA
∗
[fij .dims])

⊗ uc→i(PA
∗
[uc→i.dims])

 (8)

Besides, since a subset of Desc(xi) is already eliminated by the variables in
Sep(xi) (and hence their assignment is also determined), we need to forward
the corresponding assignment of these variables as well. We formalize these
variables as interface descendants of xi, (i.e., IDi). Formally,

IDi = {xj ∈ Desc(xi)|∃xk ∈ Sep(xi), s.t., xk ∈ AP (xj)} (9)

Thus, the value message forwarded from xi to its child xc ∈ C(xi) in our
algorithm would contain not only the assignment to Sep(xc) but also the
assignment to the variables eliminated at xi and Sep(xc) (i.e, EV c

i ∪ IDc).
Algorithm 2 presents the sketch of the value propagation phase. The phase

is initiated by the root variable selecting the optimal assignment for itself
(line 12-13). Given the assignment either determined by its parent (line 15)
or computed locally (line 14), a variable xi selects the optimal assignment to
EV c

i ,∀xc ∈ C(xi) by Eq. (8) (line 19), and propagates the assignment together
with the determined assignment to xc (line 20-21). The algorithm terminates
when each leaf variable receives a VALUE message.

4.4 Complexity analysis

In this subsection, we theoretically analyze the complexity of AsymDPOP. We
begin by showing the relationship between IDi and EVi, then we detail the
complexity analysis.



16 Dingding Chen et al.

Lemma 1 IDi =
(
C(xi) ∪

(
∪xc∈C(xi)IDc

))
\EVi

Proof We will first prove IDi ∩ EVi = ∅. Then, we will prove IDi ∪ EVi =
C(xi) ∪ (∪xc∈C(xi)IDc).

According to Eq. (2), we can conclude

EVi = {xj ∈ AC(xi)|xk /∈ AP (xj),∀xk ∈ Sep(xi)}
= {xj ∈ Desc(xi)|xi ∈ AP (xj), xk /∈ AP (xj),∀xk ∈ Sep(xi)}

Since EVi is a subset of Desc(xi) that does not connect with the variable
in Sep(xi) while ID(xi) is a subset of Desc(xi) that connects with Sep(xi)
(according to Eq. (9)), we have IDi ∩ EVi = ∅.

On the basis of the above analysis, we can also draw the conclusion that

IDi ∪ EVi = {xj ∈ Desc(xi)|∃xk ∈ Sep(xi) ∪ {xi}, s.t., xk ∈ AP (xj)}
= {xj ∈ Desc(xi)|∃xk ∈ Anc(xi) ∪ {xi}, s.t., xk ∈ AP (xj)}
= {xj ∈ C(xi) ∪ (∪xc∈C(xi)Desc(xc))|∃xk ∈ Anc(xi) ∪ {xi}, s.t., xk ∈ AP (xj)}
= {xj ∈ C(xi)|∃xk ∈ Anc(xi) ∪ {xi}, s.t., xk ∈ AP (xj)}
∪
(
∪xc∈C(xi){xj ∈ Desc(xc)|∃xk ∈ Anc(xi) ∪ {xi}, s.t., xk ∈ AP (xj)}

)
= C(xi) ∪

(
∪xc∈C(xi){xj ∈ Desc(xc)|∃xk ∈ Anc(xi) ∪ {xi}, s.t., xk ∈ AP (xj)}

)
= C(xi) ∪

(
∪xc∈C(xi){xj ∈ Desc(xc)|∃xk ∈ Anc(xc), s.t., xk ∈ AP (xj)}

)
= C(xi) ∪

(
∪xc∈C(xi){xj ∈ Desc(xc)|∃xk ∈ Sep(xc), s.t., xk ∈ AP (xj)}

)
= C(xi) ∪

(
∪xc∈C(xi)IDc

)
The equation in the first to the second step and the sixth to the seven-step
hold, since Sep(xi) composes of all the ancestors that share constraints with
Desc(xi) ∪ {xi}. According to Eq. (9), the equation in the seven to the last
step holds. Thus, the lemma is proved.

Theorem 1 The size of a UTIL message produced by a variable xi is expo-
nential in |Sep(xi)∪ {xi} ∪ IDi|. That is, ui→p.dims = Sep(xi)∪ {xi} ∪ IDi.

Proof We will prove the theorem by induction.
Base case. When xi is a leaf, the dimensions of the utility table ui→p only

consist of AP (xi) ∪ {xi} (line 1-3, 9-10 of Algo. 1). Since Sep(xi) = AP (xi)
and IDi = ∅, the theorem holds for the base case.

Inductive hypothesis. Assume that the theorem holds for xc ∈ C(xi), we
now show the theorem holds for non-leaf variable xi as well. According to Eqs.
(2) and (3), we have

ui→p.dims =
(
N(xi) ∪ {xi} ∪

(
∪xc∈C(xi)uc→i.dims

))
\EVi

=
(
N(xi) ∪ {xi} ∪

(
∪xc∈C(xi)Sep(xc) ∪ {xc} ∪ IDc

))
\EVi

=
(
AP (xi) ∪

(
∪xc∈C(xi)Sep(xc)

)
∪ {xi} ∪AC(xi) ∪ C (xi) ∪

(
∪xc∈C(xi)IDc

))
\EVi

=
(
AP (xi) ∪

(
∪xc∈C(xi)Sep(xc)

)
∪ {xi} ∪AC(xi) ∪

(
∪xc∈C(xi)IDc

))
\EVi

=
(
AP (xi) ∪

(
∪xc∈C(xi)Sep(xc)\{xi}

)
∪ {xi} ∪AC(xi) ∪

(
∪xc∈C(xi)IDc

))
\EVi

=
(
Sep(xi) ∪ {xi} ∪AC(xi) ∪

(
∪xc∈C(xi)IDc

))
\EVi
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Fig. 4: A chain-like pseudo tree

The equation in the first to the second step holds due to the inductive hypoth-
esis. Due to (Sep(xi) ∪ {xi}) ∩ EVi = ∅, we can conclude

ui→p.dims = Sep(xi) ∪ {xi} ∪
(
AC(xi) ∪

(
∪xc∈C(xi)IDc

))
\EVi

= Sep(xi) ∪ {xi} ∪
(
PC(xi) ∪ C(xi)

(
∪xc∈C(xi)IDc

))
\EVi

= Sep(xi) ∪ {xi} ∪ (PC(xi)\EVi) ∪
(
C(xi)

(
∪xc∈C(xi)IDc

))
\EVi

= Sep(xi) ∪ {xi} ∪ (PC(xi)\EVi) ∪ IDi

= Sep(xi) ∪ {xi} ∪ IDi

According to Lemma 1, the equation in the third to the fourth step holds.
Since the variables in PC(xi) must be eliminated at xi or the variables in
Sep(xi), we have PC(xi) ⊆ EVi ∪ IDi. Further, we have PC(xi)\EVi ⊆ IDi

based on IDi ∩ EVi = ∅ proved in Lemma 1, and thus the equation in the
fourth to the last step holds. Therefore, the theorem is proved.

5 Two tradeoffs for AsymDPOP

In this section, we first demonstrate that AsymDPOP suffers serious scalability
problems in both memory and computation, and then propose two tradeoffs
including a table-set propagation scheme in Sect. 5.1 and mini-batch elimina-
tion scheme in Sect. 5.2 to make AsymDPOP a practical algorithm. Finally,
we discuss the relevance and difference between the proposed trade-offs and
the related work in Sect. 5.3.

5.1 Table-set propagation scheme: A tradeoff between memory and privacy

As shown in Sect. 4.4, the size of a UTIL message forwarded by a variable xi
is exponential in |Sep(xi) ∪ {xi} ∪ IDi|, which leads to unacceptable mem-
ory consumption when the built pseudo tree is poor. Consider the pseudo tree
shown in Fig. 4. Since every variable has a constraint with the root variable, all
the variables can only be eliminated at the root variable due to GNLE, which
incurs a memory consumption of O(dn) due to the joint operation at each vari-
able. Besides, a large utility table would also incur unacceptable computation
overheads due to the joint operations in Eq. (6) (line 9 of Algo. 1).

Therefore, we consider reducing the dimension size of each propagated
utility table by avoiding the unnecessary joint operations in Eq. (6), and hereby
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each variable only needs to propagate a set of smaller utility tables rather than
a joint and high-dimension utility table. However, completely discarding joint
operations would incur privacy leakages. Taking Fig. 4 as an example again,
if xn chooses to propagate both fn(n−1) and fn1 without performing the joint
operation to xn−1, then xn−1 would know the private functions of xn directly.
Thus, we propose a compromise between memory consumption and privacy
by introducing a parameter kp to control the maximal number of dimensions
of each local utility table. We refer to the tradeoff as a table-set propagation
scheme (TSPS). In TSPS, the utility table set propagated by a variable xi (i.e.,
Ui→p) consists of its local utility tables (i.e., U i

i→p) and the result of handling
the received utility tables (i.e., U c

i→p,∀xc ∈ C(xi)), i.e.,

Ui→p =
{
U j
i→p|∀xj ∈ {xi} ∪ C (xi)

}
(10)

where U i
i→p is computed by:

U i
i→p = PartF

(
∪

xj∈AP (xi)
{fij} , kp

)
(11)

And U c
i→p is calculated by:

U c
i→p = Elim

(
JoinSet

(
∪

xj∈Bc
i

{fij}, Uc→i

)
, EV c

i

)
(12)

where Function PartF is used to implement TSPS by partitioning and joining
the private functions of xi related to AP (xi) into multiple local utility tables,
such that the dimension size of each local utility table is no greater than kp.3

Functions JoinSet and Elim are applied to realize the join and elimination
operations of the set of utility tables, respectively. It is noteworthy that the
join of ∪xj∈Bc

i
{fij} and Uc→i does not increase the number of dimensions

to Uc→i. Additionally, propagating the utility table set Ui→p calculated by
Eq. (10) can still guarantee the completeness of the algorithm since we can
reconstruct ui→p computed by Eq. (6) by joining all the utility tables in Ui→p,
i.e., ui→p = ⊗u∈Ui→p

u.
Algorithm 3 presents the sketch of AsymDPOP-TSPS4 (i.e., AsymDPOP

with TSPS) which consists of a utility set propagation phase and a value
propagation phase. Different from the utility propagation phase in AsymD-
POP, the utility set propagation phase applies TSPS to propagate the set of
utility tables calculated by Eq. (10) (line 12-13). In Eq. (10), xi first joins its
private functions w.r.t. its (pseudo) children with the received utility table set
Uc→i (line 20-23), and then eliminates all the variables in EV c

i from the joint
utility table set (line 24-25). Finally, it obtains the propagated utility table set
Ui→p by adding the eliminated result with its local utility tables obtained by

3 It is worth noting that TSPS can only make sure that the size of each local utility table
is not greater than kp, and does not guarantee that the overall memory consumption is no
greater than kp.

4 An example for AsymDPOP-TSPS can be found in Appendix A.2.
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Algorithm 3: AsymDPOP-TSPS for xi

When Initialization:
1 if xi is a leaf then
2 PropUtil()

When received UTILSET(Uc) from xc ∈ C(xi):
3 Uc→i ← Uc

4 if xi has received all UTILSET from C(xi) then
5 if xi is the root then
6 compute Ui by Eq. (10)
7 v∗

i ← argmin
xi

(
⊗

u∈Ui
u)

8 PropValue({(xi = v∗
i )})

9 else
10 PropUtil()

When received VALUE(PA∗) from P (xi):
11 PropValue(PA∗)

Function PropUtil():
12 compute Ui→p by Eq. (10)
13 send UTILSET(Ui→p) to P (xi)

Function PropValue(PA∗):
14 foreach xc ∈ C(xi) do
15 PAc

i ← PA∗
[Sep(xc)∪{xc}∪IDc]

16 if EV c
i ̸= ∅ then

17 compute V c∗
i for EV c

i by Eq. (13)
18 PAc

i ← PAc
i ∪ {(xj = V c∗

i[xj ]
)|∀xj ∈ EV c

i }
19 send VALUE(PAc

i ) to xc

Function JoinSet(U,UF ):
20 foreach uf ∈ UF do
21 if ∃u ∈ U, s.t., uf .dims ⊂ u.dims then
22 u← u⊗ uf

23 return U

Function Elim(U,EV ):
24 UEV ← {u|∀u ∈ U, u.dims ∩ EV ̸= ∅}
25 return (U\UEV ) ∪ {minEV (

⊗
u∈UEV

u)}
Function PartF(UF , kp):

26 order UF according to AP (xi)’s levels
27 U ← ∅, u← null
28 foreach uf ∈ UF do
29 if |u.dims| ≥ kp then
30 U ← U ∪ {u},u← null
31 u← u⊗ uf

32 if u ̸= null then
33 U ← U ∪ {u}
34 return U

Function PartF. In the function, the private functions of xi related to AP (xi)
are partitioned into multiple small utility tables according to kp (line 26-31).
If there are any remaining functions, they would be joined into a utility table
and then added into the local utility tables (line 32-33).

The value propagation phase is roughly the same as the one in AsymDPOP.
Since the utility set propagation uses TSPS, there may have more than one
utility table in Uc→i. Thus, xi must join all the tables in Uc→i and ∪xj∈Bc

i
{fij}
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before selecting the optimal assignment for EV c
i (line 17). That is,

Xc∗
i = arg min

EV c
i

 ⊗
xj∈Bc

i

fij(PA
∗
[fij .dims])

⊗( ⊗
u∈Uc→i

u(PA∗[u.dims])

)
(13)

Consider the pseudo tree shown in Fig. 4 again. Assume that kp = 3,
then variable xn would propagate the utility set un→n−1 = {fn(n−1) ⊗ fn1}
to xn−1. Since there is no elimination at xn−1, it is unnecessary to perform
the joint operation. Thus, xn−1 would propagate the utility set un−1→n−2 =
{f(n−1)(n−2) ⊗ f(n−1)1, f(n−1)n ⊗ un→n−1} to xn−2. It can be concluded that
TSPS in the example only requires O(nd3) space, which is much smaller than
the one required by GNLE. Formally, we have the following theorem.

Theorem 2 The size of each utility table of a variable xi in AsymDPOP-
TSPS is no greater than

d
max(min(|AP (xi)|,kp), max

xc∈C(xi)
(|Sep(xc)∪(IDi∩(IDc∪{xc}))|)

Proof According to Eq. (10), the set of utility tables propagated by xi con-
sists of the local utility tables of xi (i.e., U i

i→p = PartF(∪xj∈AP (xi){fij}, kp))
and the results obtained by handling the received utility tables (i.e., U c

i→p =
Elim(JoinSet(∪xj∈Bc

i
{fij}, Uc→i), EV

c
i )),∀xc ∈ C(xi)). Since the private func-

tions of xi related to AP (xi) are partitioned into its local utility tables ac-
cording to kp, the maximal size of its local utility tables is

dmin(|AP (xi)|,kp)

According to Theorem 1, the dimensions of each utility table received from
child xc ∈ C(xi) is a subset of Sep(xc) ∪ {xc} ∪ IDc. Since TSPS omits the
joint operation in Eq. (6), the dimensions of the utility tables in U c

i→p is
a subset of (Sep(xc) ∪ {xc} ∪ IDc) \EV c

i . As Sep(xc) ∩ EV c
i = ∅, we have

(Sep(xc) ∪ {xc} ∪ IDc) \EV c
i = Sep(xc) ∪ (({xc} ∪ IDc) \EV c

i ).

Besides, according to Lemma 1, we have

IDi =

(
C(xi) ∪

(
∪

xc∈C(xi)
IDc

))
\EVi

=

(
∪

xc∈C(xi)
({xc} ∪ IDc)

)
\EVi

=

(
∪

xc∈C(xi)
({xc} ∪ IDc)

)
\
(

∪
xc∈C(xi)

EV c
i

)
= ∪

xc∈C(xi)
(({xc} ∪ IDc) \EV c

i )
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Since (({xc}∪IDc)\EV c
i )∩(({xc′}∪IDc′)\EV c′

i ) = ∅,∀xc, xc′ ∈ C(xi), c 6= c′,
we can conclude that

({xc} ∪ IDc) \EV c
i = (({xc} ∪ IDc) \EV c

i ) ∩ IDi

= (({xc} ∪ IDc) ∩ IDi) \ (EV c
i ∩ IDi)

= (({xc} ∪ IDc) ∩ IDi) \∅
= ({xc} ∪ IDc) ∩ IDi

Therefore, we have Sep(xc)∪ (({xc} ∪ IDc)\EV c
i ) = Sep(xc)∪ (IDi ∩ ({xc} ∪

IDc)). That is, the maximal size of the utility tables obtained by processing
the received utility tables is

d
max

xc∈C(xi)
(|Sep(xc)∪(IDi∩(IDc∪{xc}))|)

Thus, the theorem holds.

Here, we only give an upper bound on the memory consumption of AsymDPOP-
TSPS, because the space complexity of an agent in AsymDPOP-TSPS is not
only related to the parameter of TSPS (i.e., kp) but also to the constraint
graph structure of the problem to be solved. For example, when the constraint
graph is fully connected, all variables are eliminated at the root agent, and thus
the space complexity of an agent ai in AsymDPOP-TSPS is dmin(kp,|AP (ai)|)

while that of ai in AsymDPOP is dn.

Theorem 3 The memory consumption of AsymDPOP-TSPS is no greater
than the one of AsymDPOP.

Proof According to Theorems 1 and 2, to prove the theorem, we only need
to prove that max(min(|AP (xi)|, kp),maxxc∈C(xi)(|Sep(xc) ∪ (IDi ∩ (IDc ∪
{xc}))|) ≤ |Sep(xi) ∪ {xi} ∪ IDi|.

Since Sep(xi) = AP (xi) ∪ (∪xc∈C(xi)Sep(xc))\{xi}, we have AP (xi) ⊆
Sep(xi) and Sep(xc) ⊆ Sep(xi) ∪ {xi},∀xc ∈ C(xi). Moreover, due to IDi ∩
(IDc ∪{xc}) ⊆ IDi,∀xc ∈ C(xi), we can conclude that |AP (xi)| ≤ |Sep(xi)∪
{xi} ∪ IDi| and maxxc∈C(xi)(|Sep(xc) ∪ (IDi ∩ (IDc ∪ {xc}))|) ≤ |Sep(xi) ∪
{xi} ∪ IDi|. Thus, the theorem is proved.

5.2 Mini-batch elimination scheme: A tradeoff between time and space

In AsymDPOP-TSPS, a joint utility table could be factorized to a set of
smaller utility tables, which allows us to reduce the computational efforts
when performing the variable eliminations by a decrease-and-conquer strategy.
Taking Fig. 4 as an example, to perform the elimination, x1 in AsymDPOP-
TSPS (kp = 2) eliminates x2, . . . xn over a big utility table by Eq. (10), which
requires O(dn) operations (i.e., min{x2,...,xn}(f12 ⊗ f21 ⊗ · · · ⊗ f1n ⊗ fn1 ⊗
fn(n−1)⊗f(n−1)n)). In fact, we could exploit the structure of each small utility
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Algorithm 4: MBES
Function Elim MBES(U,EV, ke):

1 EVGroup← GroupEV(U,EV )
2 EV Set← ∪EV ∈EV GroupPartEV(EV, ke)
3 foreach EV ∈ EV Set do
4 UEV ← {u|∀u ∈ U, u.dims ∩ EV ̸= ∅}
5 U ← (U\UEV ) ∪ {minEV (⊗u∈UEV

u)}
6 return U

Function GroupEV(U,EV ):
7 GEV ← {u.dims ∩ EV |∀u ∈ U}, RMEV ← ∅
8 while ∃EV ′, EV ′′ ∈ GEV , EV ′, EV ′′ /∈ RMEV , s.t.EV ′ ∩ EV ′′ ̸= ∅ do
9 EV ′ ← EV ′ ∪ EV ′′,RMEV ← RMEV ∪ EV ′′

10 return GEV \RMEV

Function PartEV(EV, ke):
11 EV Set← ∅, EV ′ ← ∅
12 foreach ev ∈ EV do
13 if |EV ′| ≥ ke then
14 EV Set← EV Set ∪ {EV ′}, EV ′ ← {ev}
15 else
16 EV ′ ← EV ′ ∪ {ev}
17 if EV ′ ̸= ∅ then
18 random select an element EV ′′ ∈ EV Set

19 EV ′′ ← EV ′′ ∪ EV ′

20 return EV Set

 

Fig. 5: A set of utility tables

table to reduce computational complexity by arranging the min operators
among them. That is,

min
x2

(
f12 ⊗ f21 ⊗ · · · ⊗min

xn

(
f1n ⊗ fn1 ⊗ fn(n−1) ⊗ f(n−1)n

))
which can be solved recursively from xn to x2 and the overall complexity is
O(nd3). In other words, we reduce the computational complexity by exploiting
the independence among utility tables to avoid unnecessary combinations of
utility tables.

However, completely distributing the min operators into every variable
would incur high memory consumption, as a min operator could implicitly
join utility tables to a big and indivisible table. Although the problem can be
alleviated by carefully arranging the min operators, it could be impossible to
find the optimal sequence of eliminations in practice. Consider the utility tables
shown as a factor graph in Fig. 5, where square nodes represent utility tables,
circle nodes represent variables and the red circles represent the variables to
be eliminated. Obviously, no matter how to arrange the elimination sequence,



Title Suppressed Due to Excessive Length 23

a 3-ary utility table must appear when eliminating x1 or x2. Instead, if we
jointly eliminate both x1 and x2, the maximal number of dimensions is 2. We
thus overcome the issue by introducing a parameter ke which specifies the
minimal number of variables eliminated in a min operator (i.e., the size of a
batch), and refer to the tradeoff as a mini-batch elimination scheme (MBES).

MBES can be deployed into AsymDPOP-TSPS by replacing Function
Elim in Eq. (10) with ElimMBES, named AsymDPOP-TSPS-MEBS. Algo-
rithm 4 gives the sketch of MBES which consists of the following three parts.
The first part realized by Function GroupEV is used to divide the elimi-
nated variables into disjoint variable groups such that the eliminated variables
in each group share at least one common utility table (line 1, 7-10). This part
is crucial, since eliminating independent variables jointly is equivalent to elim-
inating them individually. Taking Fig. 5 for example, if we set ke = 2 and
let x2, x5 be a batch, a 4-ary utility table over x1, x3, x4 and x6 still appear
even if x2 and x5 are jointly eliminated. Then, the second part implemented
by Function PartEV is applied to partition the eliminated variables in each
group into several sets (EV Set) according to ke (line 2, 11-20). The last part
is carried out to traverse EV Set to eliminate the utility tables (line 3-5). In
detail, for each set in EV Set (i.e., EV ), a variable xi performs variable elim-
inations to the utility tables related to EV and replaces these utility tables
with the eliminated result. The process terminates when all the eliminated
variable sets are exhausted.

5.3 Discussions

Although the proposed trade-offs share some similarities with the existing
work, including mini-bucket elimination (Dechter and Rish, 2003) and super
bucket (Kask et al., 2005), they are fundamentally different.

Both TSPS and mini-buckets elimination aim to reduce memory consump-
tion by partitioning a set of constraint functions into multiple buckets. How-
ever, TSPS trades privacy loss for smaller memory consumption, while mini-
buckets elimination trades solution quality for smaller memory consumption.
Specifically, mini-bucket elimination performs variable elimination locally on
these buckets whose dimensions contain the eliminated variable, and thus it
can only get approximate solutions. As these buckets are directly propagated
to the ancestors without eliminating local variables in TSPS, the ancestors can
infer the private function costs of their (pseudo) children accordingly. Nonethe-
less, TSPS can guarantee the completeness of the algorithm. That is because
the buckets involving the eliminated variables have included all the constraint
functions of those variables and are joint into a utility table when executing
the variable elimination.

Besides, MBES is different from super bucket although both of them aim
to optimize the variable elimination procedure. Concretely, super bucket uses
more computational efforts to save memory consumption by eliminating mul-
tiple variables at once rather than one at a time. While MBES uses more
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memory consumption to reduce computational efforts by eliminating multiple
variables sequentially rather than jointly. MBES is also different from mini-
buckets elimination. Specifically, mini-buckets elimination partitions a set of
constraint functions into multiple buckets and then performs variable elimina-
tion on these buckets. While MBES divides a set of eliminated variables into
multiple batches and then eliminates these batches from the related buckets
sequentially.

6 Memory-bounded inference for ADCOPs

Although TSPS tries to reduce memory consumption by limiting the joint
operation to local constraint functions, the space complexity is still exponen-
tial according to Theorem 2. That is, both AsymDPOP and AsymDPOP-
TSPS are impracticable for solving large-scale problems within the limited
memory budget. Therefore, it is imperative to develop memory-bounded in-
ference algorithms for ADCOPs. In this section, we extend RMB-DPOP, a
state-of-the-art memory-bounded algorithm for DCOPs, to reduce the exces-
sive memory consumption of AsymDPOP. We present the proposed algorithm
named RMB-AsymDPOP in Sect. 6.1. Moreover, to improve the scalability of
RMB-AsymDPOP, we propose RMB-AsymDPOP-TSPS by deploying TSPS
on RMB-AsymDPOP in Sect. 6.2.

6.1 RMB-AsymDPOP

A major issue of directly applying RMB-DPOP to reduce the excessive mem-
ory consumption of AsymDPOP is that RMB-DPOP cannot handle the redun-
dancy due to the non-local elimination. Specifically, in GNLE, the variables
eliminated at a variable xi are EVi and the dimensions of the utility table
propagated by xi are Sep(xi) ∪ {xi} ∪ IDi. Thus, based on the computation
of CC nodes in Eq. (1), the CC nodes enumerated at xi (i.e., CCi) can be
computed by:

CCi =

CClistr ∩
(

∪
xc∈C(xi)

(Sep(xc) ∪ {xc} ∪ IDc)

)
xi is a CR node

CClistr ∩ EVi otherwise

where CClistr is the CC nodes of the cluster containing xi.
In fact, the elimination of CC nodes can be optimized by considering the

branch independence of the variable eliminations (i.e., EVi = ∪xc∈C(xi)EV
c
i

and EV c
i ∩EV c′

i = ∅,∀xc, xc′ ∈ C(xi), c 6= c′). That is, we propose to enumer-
ate CC nodes in different branches independently and refer this enumeration
scheme as branch-independent distributed enumeration mechanism (BI-DEM).
Concretely, in BI-DEM, xi is only responsible for enumerating the subset of
CCi that belongs to the branch xc (i.e, CCc

i ) for its child xc ∈ Cin
i . Here, Cin

i
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Algorithm 5: RMB-AsymDPOP for xi (message passing)

When Initialization:
1 start Labeling phase

When Labeling phase finished:
2 initialize donei and uc

i→p, ∀xc ∈ C(xi)

3 Cin
i ← {xc|∀xc ∈ C(xi), |Sep(xc) ∪ {xc} ∪ IDc| > kmb}

4 LabelItself() and compute CCc
i by Eq. (14)

5 if TY PE(xi) = CR then
6 PropInstantiation()
7 else if TY PE(xi) = NORMAL ∧ xi is a leaf then
8 PropUtil()

When received NORMALUTIL (uc) from xc ∈ C(xi)\Cin
i :

9 uc→i ← uc and compute uc
i→p by Eq. (7)

10 if xi has received all NORMALUTIL from C(xi) then
11 if xi is the root then
12 start Value propagation phase
13 else if TY PE(xi) = NORMAL then
14 PropUtil()

When received INSTANTIATION (Insi) from P (xi):
15 if TY PE(xi) = CL then
16 PropUtil()
17 else
18 PropInstantiation()

When received BOUNDEDUTIL (uc) from xc ∈ Cin
i :

19 uc→i ← uc and update uc
i→p by Eq. (16)

20 if Insci .next() ̸= null then
21 Insci ← Insci .next()
22 send INSTANTIATION(Insci ∪ Insi[uc→i.dims]) to xc

23 else
24 donei ← donei ∪ {xc}
25 if |donei| = |Cin

i | then
26 initialize donei and uc

i→p, ∀xc ∈ Cin
i

27 if xi is the root then
28 startValue propagation phase
29 else
30 PropUtil()

is a subset of C(xi), each of which is in the cluster. And CCc
i can be calculated

by:

CCc
i =

{
CClistr ∩ (Sep(xc) ∪ {xc} ∪ IDc) xi is a CR node

CClistr ∩ EV c
i otherwise

(14)

Thus, we have CCi = ∪xc∈Cin
i
CCc

i based on Eq. (14). Next, we will detail the
process of computing a bounded utility table in RMB-AsymDPOP.

When a cluster node xi receives an instantiation (i.e., Insi) from its parent,
the bounded utility table propagated by xi can be computed by Eq. (15) after
all the inference results from C(xi) have arrived.

ui→p =

(
⊗

xj∈AP (xi)
fij (Insi)

)
⊗
(

⊗
xc∈C(xi)

uci→p (Insi)

)
(15)

where uci→p is the result of handling the received utility table uc→i. Specifically,

if xc is the node outside the cluster (i.e., xc ∈ C (xi) \Cin
i ), then uci→p can be
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Algorithm 5: RMB-AsymDPOP for xi (auxiliary functions)

Function PropUtil():
31 if TY PE(xi) ∈ {NORMAL,CR} then
32 compute ui→p by Eq. (6)
33 send NORMALUTIL(ui→p) to P (xi)

34 else
35 compute ui→p by Eq. (15)
36 send BOUNDEDUTIL(ui→p) to P (xi)

Function PropInstantiation():
37 foreach xc ∈ Cin

i do
38 Insci ← the first instantiation of CCc

i
39 if TY PE(xi) = CR then
40 send INSTANTIATION(Insci ) to xc

41 else
42 send INSTANTIATION(Insci ∪ Insi[uc→i.dims]) to xc

Function LabelItself ():
43 if |Sep(xi) ∪ {xi} ∪ IDi| ≤ kmb then
44 if Cin

i = ∅ then
45 TY PE(xi)← NORMAL
46 else
47 TY PE(xi)← CR

48 else
49 if Cin

i = ∅ then
50 TY PE(xi)← CL
51 else
52 TY PE(xi)← CN

computed by Eq. (7). Otherwise, uci→p is calculated by:

uci→p = Update

(
uci→p, min

EV c
i \CCc

i

((
⊗

xj∈Bc
i

fij (Insi ∪ Insci )
)
⊗ uc→i

))
(16)

where Insci is the instantiation of CCc
i .

Algorithm 5 gives the sketch of RMB-AsymDPOP5. After the labeling
phase ends, each variable xi obtains the CC nodes of the cluster containing
xi, labels its node type (line 4, 43-52) and computes the CC nodes CCc

i for
all the children in Cin

i by Eq. (14) (line 4). Then, a CR node xi starts the
memory-bounded inference by forwarding the first instantiation of CCc

i to all
the children in Cin

i (line 5-6, 37-42).
When receiving an instantiation Insi, xi forwards the bounded utility table

computed by Eq. (15) to its parent via a BOUNDEDUTIL message if it is a CL
node (i.e., the cluster node with Cin

i = ∅) (line 15-16). Otherwise, it augments
Insi by the first instantiation of CCc

i (i.e., Insci ) and propagates the extended
instantiation to all the children in Cin

i (line 18, 37-42). Once xi receives a
BOUNDEDUTIL message from its child xc ∈ Cin

i , it joins its private functions
related to Bc

i , eliminates all the variables in EV c
i and then updates the cache

uci→p with the eliminated result as shown in Eq. (16) (line 19). Afterward, it
finds the next instantiation of CCc

i for xc. If the next instantiation exists, it
replaces Insci with the new instantiation and propagates that instantiation to

5 We omit the details of the value propagation phase due to its similarity to the one in
MB-DPOP, and also omit the details of ISM and CACHE in RMB-AsymDPOP due to their
similarity to the ones in RMB-DPOP.
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xc (line 20-22). Otherwise, it marks xc as a node that completes the memory-
bounded utility propagation under Insi (line 20). When all the children in
Cin

i have completed, xi sends the bounded utility table to its parent via a
BOUNDEDUTIL message if it is a cluster node (line 25, 34-36).

6.2 RMB-AsymDPOP-TSPS

Although RMB-AsymDPOP can be applied in memory-limited cases, it is still
unable to solve large-scale problems. In fact, it cannot solve the random sensor
networks with more than 9 sensors and the domain size of 8 under the memory
constraint (i.e., kmb = 5), as shown in the experimental results of Sect. 8.4.
Thus, we propose to improve the scalability of RMB-AsymDPOP by combining
it with TSPS. We do not incorporate MBES into RMB-AsymDPOP-TSPS
since MBES could increase the memory consumption of the algorithm and
make it exceed the memory budget.

Since each agent propagates a utility table set during the utility set propa-
gation phase in AsymDPOP-TSPS, there are two issues when deploying TSPS
to RMB-AsymDPOP. The first is that the dimensions of each propagated util-
ity table are only determined after the table is created, and thus are unknown
before the utility set propagation phase and the labeling phase. However, these
dimensions are indispensable for determining the clusters and CC nodes during
the labeling phase. Therefore, we propose a preprocessing phase to simulate
the utility table set propagation such that the dimensions of the propagated
utility tables are known before the labeling phase.

The second is that there still exists redundancy when adopting the memory-
bounded utility propagation of RMB-AsymDPOP into RMB-AsymDPOP-
TSPS. Concretely, during the memory-bounded utility set propagation, each
cluster node conditions its utility table set by the instantiation of CC nodes
and then propagates the set of bounded utility tables to its parent iteratively.
In fact, for the utility tables within the memory budget could be propagated
only once, since they do not require any instantiation to limit their dimen-
sions. Thus, we propose a two-phase utility set propagation scheme including
a normal utility set propagation phase to forward the utility tables below
the memory limit, and a bounded utility set propagation phase to iteratively
propagate the remaining utility tables with some dimensions fixed by the in-
stantiation of CC nodes. In the following, we will detail the preprocessing
phase and the two-phase utility set propagation scheme, respectively.

Algorithm 6 presents the sketch of the preprocessing phase. The phase
begins with leaf variables sending the dimensions of their local utility tables
to their parents via DIMSET messages (line 2-3), where these dimensions
are obtained by Function PartD to implement TSPS (line 1, 14-22). Once
receiving a DIMSET message from its child xc ∈ C(xi), xi stores the received
dimensions of each utility and attaches the private functions related to Bc

i

into each received utility (line 4-7). Afterward, it applies Function ElimD to
simulate the variable elimination process to obtain the dimensions of U c

i→p
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Algorithm 6: Preprocessing Phase in RMB-AsymDPOP-TSPS for xi

When Initialization:
1 Ui

i→p ← PartD(∪xj∈AP(xi)
{fij} , kp)

2 if xi is a leaf then
3 send DIMSET(Ui

i→p) to P (xi)

When received DIMSET (Uc) from xc ∈ C(xi):
4 Uc→i ← Uc

5 foreach xj ∈ Bc
i do

6 if ∃u ∈ Uc→i, s.t., {xi, xj} ⊂ u.dims then
7 u.joint← u.joint ∪ {fij}
8 Uc

i→p ← ElimD(Uc→i, EV c
i )

9 if xi has received all DIMSET from C(xi) then
10 if xi is not the root then

11 send DIMSET(∪xj∈{xi}∪C(xi)
Uj

i→p) to P (xi)

12 else
13 end Perprocessing phase

Function PartD (UF , kp):
14 U ← ∅,u← an empty bucket
15 order UF according to AP (xi)’s levels
16 foreach uf ∈ UF do
17 if |u.dims| ≥ kp then
18 U ← U ∪ {u},u← an empty bucket
19 u.dims← u.dims ∪ uf .dims

20 if |u.dims| > 0 then
21 U ← U ∪ {u}
22 return U

Function ElimD (U,EV ):
23 EVGroupc

i ← GroupEV(U,EV )
24 foreach EV ∈ EVGroupc

i do
25 UEV ← {u|∀u ∈ U, u.dims ∩ EV ̸= ∅}
26 uEV ← an empty bucketwith dimensions of (∪u∈UEV

u.dims)\EV

27 U ← (U\UEV ) ∪ {uEV }
28 returnU

Function GroupEV (U,EV ):
29 GEV ← {u.dims ∩ EV |∀u ∈ U}
30 while ∃EV ′, EV ′′ ∈ GEV , s.t. EV ′ ∩ EV ′′ ̸= ∅ do
31 EV ′ ← EV ′ ∪ EV ′′, GEV ← GEV \EV ′′

32 return GEV

(line 8, 23-28). Until receiving all the DIMSET messages from its children,
xi adds the dimensions of U c

i→p,∀xc ∈ C(xi) with the dimensions of its local
utility tables, and then sends the joint dimensions to its parent if it is not the
root (line 11). Otherwise, the preprocessing phase ends (line 13).

Algorithm 7 gives the sketch of the two-phase utility set propagation scheme.
When the labeling phase ends, a variable xi labels itself (line 36, 90-99) and
computes the CC nodes for each child in Cin

i (line 36). Afterward, a leaf vari-
able xi forwards the local utility tables whose dimension size no greater than
kmb to its parent via a NORMALUTILSET message, and removes them from
its local utility tables (line 37-38, 75-79).

When receiving a NORMALUTILSET message from xc ∈ C(xi), xi merges
the received utility tables, and joins them with its corresponding private func-
tions (line 39-41). Afterward, it uses Function ElimNU to perform the variable
eliminations, and merges the eliminated result into the cache U c

i→p (line 42).
When all the NORMALUTILSET messages from its children have arrived, xi
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Algorithm 7: Two-phase utility set propagation scheme in RMB-
AsymDPOP-TSPS for xi (message passing)

When Initialization:
33 start Labeling phase

When Labeling phase finished:
34 initialize donei

35 Cin
i ← {xc|∀xc ∈ C(xi), ∃u ∈ Uc→i, s.t., |u.dims| > kmb}

36 LabelItself() and compute CCc
i by Eq. (14)

37 if xi is a leaf then
38 PropNormalUtil()

When received NORMALUTILSET (Uc) from xc ∈ C(xi):
39 Uc→i ←Merge(Uc→i, Uc)
40 foreach u ∈ Uc→i, u.data ̸= null,uf ∈ u.joint do
41 u.data← u.data⊗ uf ,u.joint← u.joint\{uf}
42 Uc

i→p ←Merge(Uc
i→p,ElimNU(xc))

43 if xi has received all NORMALUTIL from C(xi) then
44 if TY PE(xi) = CR then
45 PropInstantiation()
46 else
47 if xi is the root then
48 start Value propagation phase
49 else
50 PropNormalUtil()

When received INSTANTIATION (Insi) from P (xi):
51 if TY PE(xi) = CL then
52 foreach xc ∈ C(xi) do
53 Uc

i→p ← ElimBU(xc)

54 PropBoundedUtil()

55 else
56 PropInstantiation()

When received BOUNDEDUTILSET (Uc) from xc ∈ Cin
i :

57 Uc→i ←Merge(Uc→i, Uc)
58 foreach u ∈ Uc→i,uf ∈ u.joint do
59 u.data← u.data⊗ uf (Insi ∪ Insci )
60 Uc

i→p ← Update(Uc
i→p,ElimBU(xc))

61 if Insci .next() ̸= null then
62 Insci ← Insci .next()
63 send INSTANTIATION(Insci ∪ Insi[aug dimc

i
]) to xc

64 else
65 donei ← donei ∪ {xc}
66 if |donei| = |Cin

i | then
67 initialize donei and Uc

i→p, ∀xc ∈ Cin
i

68 if TY PE(xi) = CR then
69 if xi is the root then
70 start Value propagation phase
71 else
72 PropNormalUtil()

73 else
74 PropBoundedUtil()

starts the iterative bounded utility set propagation phase if it is a CR node
(line 44-45). Otherwise, it continues to propagate the joint utility tables to its
parent if it is not the root (line 49-50).

The iterative bounded utility propagation phase begins with a CR node xi
forwarding the first instantiation of CCc

i to all the children in Cin
i (line 44-

45, 83-89). When receiving an instantiation from its parent, xi calls Function
ElimBU to eliminate the remaining eliminated variables (i.e., EV c

i \CCc
i )

from the received utility tables (line 52-53), and forwards the set of bounded
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Algorithm 7: Two-phase utility set propagation scheme in RMB-
AsymDPOP-TSPS for xi (auxiliary functions)

Function PropNormalUtil():
75 foreach u ∈ Ui

i→p, |u.dims| ≤ kmb do
76 u.data← ⊗xj∈u.dims,i ̸=jfij

77 nU ← {u|∀u ∈ Uj
i→p, u.data ̸= null, ∀xj ∈ {xi} ∪ C(xi)}

78 Uj
i→p ← Uj

i→p\(nU ∩ Uj
i→p), ∀xj ∈ {xi} ∪ C(xi)

79 send NORMALUTILSET(nU) to P (xi)

Function PropBoundedUtil():
80 foreach u ∈ Ui

i→p do
81 u.data← ⊗xj∈u.dims,i ̸=jfij(Insi)

82 send BOUNDEDUTIL(∪xj∈{xi}∪C(xi)
Uj

i→p) to P (xi)

Function PropInstantiation():
83 foreach xc ∈ Cin

i do
84 Insci ← the first instantiation of CCc

i
85 if TY PE(xi) = CR then
86 send INSTANTIATION(Insci ) to xc

87 else
88 aug dimc

i ← ∪u∈Uc→i,|u.dims|>kmb
u.dims

89 send INSTANTIATION(Insci ∪ Insi[aug dimc
i
]) to xc

Function LabelItself ():

90 if |u.dims| ≤ kmb, ∀u ∈ (∪xj∈{xi}∪C(xi)
Uj

i→p) then

91 if Cin
i = ∅ then

92 TY PE(xi)← NORMAL
93 else
94 TY PE(xi)← CR

95 else
96 if Cin

i = ∅ then
97 TY PE(xi)← CL
98 else
99 TY PE(xi)← CN

Function ElimNU (xc):
100 U ← {u|∀u ∈ Uc→i, u.data ̸= null}
101 foreach EV ∈ EVGroupc

i do
102 UEV ← {u|∀u ∈ Uc→i, u.dims ∩ EV ̸= ∅}
103 U ← U\UEV ,dEV ← ∪u∈UEV

u.dims\EV

104 if |dEV | ≤ kmb, u.data ̸= null, ∀u ∈ UEV then
105 Uc→i ← Uc→i\UEV ,EVGroupc

i ← EVGroupc
i\{EV }

106 U ← U ∪ {minEV (⊗u∈UEV
u)}

107 Uc→i ← Uc→i\U
108 return U

Function ElimBU (xc):
109 U ← {u(Insi ∪ Insci )|∀u ∈ Uc→i}
110 foreach EV ∈ EVGroupc

i do
111 UEV ← {u|∀u ∈ U, u.dims ∩ EV ̸= ∅}
112 U ← U\UEV ∪ {minEV \CCc

i
(⊗u∈UEV

u)}
113 return U

utility tables via a BOUNDEDUTILSET to its parent if it is a CL node (line
51-54, 80-82). Otherwise, xi augments Insi by the first instantiation of CCc

i

(i.e., Insci ) and propagates the extended instantiation to all the children in
Cin

i (line 55-56, 83-89).

Once receiving the bounded utility tables from its child xc ∈ Cin
i , xi han-

dles the received utility tables by merging and joining them with its corre-
sponding private functions (line 57-59). Then, it calls Function ElimBU to
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perform the variable eliminations, and updates the cache U c
i→p with the elim-

inated result (line 60). Afterward, it finds the next instantiation of CCc
i for xc

to explore. If the next instantiation exists, xi replaces Insci with the instan-
tiation and propagates the new instantiation to xc (line 61-63). Otherwise,
it marks xc as a node that completes the memory-bounded utility set prop-
agation (line 65). After all the children in Cin

i have completed, xi sends the
bounded utility table set to its parent via a BOUNDEDUTILSET message
(line 66, 74, 80-82).

7 Privacy of AsymDPOP and its variants

In this section, we focus on measuring the constraint privacy loss when solving
an ADCOP with entropy, and then analyze the constraint privacy leaked out
by the message-passing during the execution of the proposed algorithms.

Privacy protection is one of the main motivations for solving constraint
problems in a distributed manner, since agents would not like their private
information to be revealed. In this paper, we aim to use entropy to measure
the constraint privacy loss incurred by the ADCOP algorithms in Sect. 8.4.
The entropy for each constraint fij ∈ F is calculated by the ratio between the
number of possible tables considering revealed information and the total num-
ber of possible tables (Grinshpoun et al., 2013; Zivan et al., 2020b). Without
loss of generality, we assume that all costs in each constraint fij are positive
integers and smaller than dmax (here, dmax = maxxi∈X,di∈Di di), and then the

total number of possible tables of fij is d
|Di||Dj |
max . When kij entries in fij are

revealed to xj , and then the total number of possible tables of fij is reduced

to d
|Di||Dj |−kij
max . Therefore, the privacy loss of fij can be formally defined by:

1− log2 d
|Di||Dj |−kij
max

log2 d
|Di||Dj |
max

By considering the amount of the missing information about all the con-
straints (i.e., fij ,∀xi ∈ X,xj ∈ N(xi)), we can obtain the amount of privacy
loss incurred by an ADCOP algorithm. That is,

1

|X|
∑
xi∈X

1

|N(xi)|
∑

xj∈N(xi)

(
1− log2 d

|Di||Dj |−kij
max

log2 d
|Di||Dj |
max

)

= 1− 1

|X|
∑
xi∈X

1

|N(xi)|
∑

xj∈N(xi)

log2 d
|Di||Dj |−kij
max

log2 d
|Di||Dj |
max

(17)

Similar to (Grinshpoun et al., 2013; Litov and Meisels, 2017; Chen et al.,
2020a), to evaluate the performance of different ADCOP complete algorithms
on the constraint privacy protection, we focus on measuring the constraint
privacy loss when solving a distributed Asymmetric MaxCSP (Maximization
Constraint Satisfaction Problems). Since there are only two values (i.e., zero
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and non-zero) for the constraint cost of each assignment to two constrained
variables in a distributed Asymmetric MaxCSP, we have dmax = 2, then Eq.
(17) can be rewritten by:

= 1− 1

|X|
∑
xi∈X

1

|N (xi) |
∑

xj∈N(xi)

log2 2|Di||Dj |−kij

log2 2|Di||Dj |

= 1− 1

|X|
∑
xi∈X

1

|N (xi) |
∑

xj∈N(xi)

|Di||Dj | − kij
|Di||Dj |

=
1

|X|
∑
xi∈X

1

|N (xi) |
∑

xj∈N(xi)

kij
|Di||Dj |

Next, we will analyze the constraint privacy loss revealed by the mes-
sage passing during the execution of the proposed algorithms. Since a VALUE
message only contains the optimal assignment, it reveals no information. That
is, all the leaked information comes from UTIL messages in AsymDPOP or
UTILSET messages in AsymDPOP-TSPS-MBES. We do not discuss the con-
straint privacy loss incurred by BOUNDEDUTIL messages in RMB-AsymDPOP
and BOUNDEDUTILSET messages in RMB-AsymDPOP-TSPS since they
exploit an iterative propagation manner to propagate the same information
in UTIL and UTILSET messages, respectively. Additionally, we do not con-
sider the privacy loss incurred by the situation that a variable xi can infer
private functions from third-party variables (i.e., those variables that do not
share constraints with xi), since this problem can be solved by hiding variable
names using code names (Léauté and Faltings, 2013).

A UTIL message forwarded from its child xc ∈ C(xi) to xi (i.e., uc→i) in
AsymDPOP would cause the direct privacy loss on the constraints between xi
and Bc

i , i.e., a half of the constraints privacy divulged in the worst case. That
is because Bc

i ⊂ uc→i.dims according to Theorem 1, and thus xi can infer the
actual constraint costs of fji,∀xj ∈ Bc

i by eliminating all the variables except
xi and xj from uc→i.

Like a UTIL message in AsymDPOP, a UTILSET message propagated
from xc ∈ C(xi) to xi (i.e., Uc→i) in AsymDPOP-TSPS-MBES would also
cause the direct privacy loss on the constraints between xi and Bc

i . Specifically,
for each variable xj ∈ Bc

i , it is eliminated at the variable in ({xi}∪Sep(xi))∩
AP (xj) due to GNLE, and thus there must exist a utility table u ∈ Uc→i such
that fji.dims ⊂ u.dims due to⊗u∈Uc→iu = uc→i by Eq. (10). Therefore, xi can
still infer the actual constraint costs of fji,∀xj ∈ Bc

i from the corresponding
utility table in Uc→i.

8 Experimental evaluations

In this section, we first compare AsymDPOP and AsymDPOP-TSPS-MBES
and empirically study how the parameters affect AsymDPOP-TSPS-MBES.
Then, we present a comparison of the performances of RMB-AsymDPOP
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and RMB-AsymDPOP-TSPS under different memory budgets. Finally, we
empirically evaluate the proposed algorithms with state-of-the-art complete
algorithms for ADCOPs including PT-ISABB, AsymPT-FB, SyncABB-1ph,
ATWB and the vanilla DPOP with PEAV formulation (PEAV DPOP). We
do not compare the proposed methods against the search-based DCOP al-
gorithms with the PEAV formulation (e.g., PEAV SyncBB, PEAV AFB and
PEAV BnB-ADOPT) and SyncABB-2ph, since they are worse than SyncABB-
1ph and ATWB as shown in the experimental results of (Grinshpoun et al.,
2013). The experiments are conducted on an i7-7820x workstation, and we
set the timeout to 30 minutes for each algorithm. Unless otherwise stated,
we set the memory limit of each agent to 256KB to simulate the real-world
scenarios, e.g., low-powered embedded devices (Duan et al., 2018). Therefore,
for the experiments with the domain size of 8, we set kmb = 5 to stay below
the limit. Similarly, when varying domain size from 4 to 8, kmb is selected
from the range of 8 down to 4 accordingly. For each experiment, we generate
50 random instances and report the medians as the results.

8.1 Experimental configurations

In the experiments, the algorithms are benchmarked on four types of problems
including random ADCOPs, scale-free networks, random sensor networks and
random Asymmetric MaxDCSPs.

– Random ADCOPs are an asymmetric version of random DCOPs, a general
form of the distributed constraint optimization problems in which a set of
agents are randomly constrained with each other. In the experiment, the
number of agents, graph density and domain size are varied to evaluate
the performance of the algorithms. (see the detailed configurations in Sect.
8.3 and 8.4). In addition, the constraint costs are uniformly selected from
[0, 100].

– Scale-free networks are the networks whose degree distributions follow
power laws (Barabási and Albert, 1999). In the experiment, Barabási-
Albert (BA) model is used to generate the constraint graph topology where
the domain size is set to 8, the number of agents varies from 10 to 14, and
an initial number of agents to 8 (i.e., m0 = 8). At each iteration of the BA
model procedure, a new agent is added and connected to 4 (i.e., m1 = 4)
other agents with a probability proportional to the number of links that
the existing agents already have. The range of constraint costs in scale-free
networks is the same as the ones in random ADCOPs.

– Random sensor network (Nguyen et al., 2019) consists of a set of sensors
arranged in a grid, where each sensor is constrained with all of its neighbor-
ing sensors and can move along its 2D plane or stay stationary. That is, the
value of each sensor corresponds to the discrete motion of that sensor. For
example, a sensor can move in two cardinal directions or stay stationary if
it has three possible values. In the experiment, we fix the domain size of
each sensor to 8, and vary the number of sensors in a square from 2 × 2
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(i.e., |A| = 4) to 6× 6 (i.e., |A| = 36). And the range of constraint costs in
random sensor networks is the same as the ones in random ADCOPs.

– Asymmetric MaxDCSPs are an asymmetric version of MaxDCSPs, a subset
of random DCOPs with all the constraint costs equal to one (Grinshpoun
et al., 2013; Modi et al., 2005). Asymmetric MaxDCSPs are classified by the
number of agents, domain size, graph density and constraint tightness (i.e.,
the probability that a cost of the assignment to two constrained variables
is non-zero). In the experiment, we consider Asymmetric MaxDCSPs with
10 agents, the graph density of 0.4, the domain size of 10, and the tightness
varying from 0.1 to 0.8.

8.2 Evaluation metrics

– The network load is the total size of messages exchanged during the algo-
rithm execution. Since search-based algorithms have an exponential num-
ber of messages with linear size, but inference-based algorithms require a
linear number of messages of exponential size, the network load is used as
a metric to evaluate the communication overheads of each algorithm in the
experiments.

– Non-Concurrent Logical Operations (NCLOs) (Netzer et al., 2012) is a
generalization of NCCCs (Zivan and Meisels, 2006) based on the concept
of atomic operations (Gershman et al., 2008). In the experiments, NCLOs
are used as a metric to evaluate hardware-independent runtime in which
the logic operations in inference-based algorithms are access to the utility
tables while the ones in search-based algorithms are constraint checks.

– Entropy (Brito et al., 2009) is used to measure the amount of the miss-
ing information of agents’ private constraints during distributed constraint
satisfaction problems solving. We adopt the method mentioned in Sect. 7
to calculate this metric when solving Asymmetric MaxDCSPs.

– The maximal dimension size is used to measure the maximal memory con-
sumption of inference-based algorithms in the experiments.

8.3 Performance comparisons: AsymDPOP and its variants

To demonstrate the effects of MBES and TSPS, we benchmark AsymDPOP
when combining MBES with different ke and TSPS with different kp on ran-
dom ADCOPs with different agent numbers. Specifically, we consider the
random ADCOPs with the domain size of 8, the density of 0.4, and the num-
ber of agents varying from 6 to 14. We do not limit the memory budget of
each algorithm to better show the effectiveness of MBES.

Figure 6 presents the experimental results. Given enough memory, AsymD-
POP can only solve the problems with less than 10 agents due to the runtime
limit. Besides, its performance is far worse than AsymDPOP-TSPS-MBES
even when kp = ∞ on all the evaluation metrics. That is because the com-
putation consumption of an agent in AsymDPOP is not only exponential in
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Fig. 6: Performance comparison for AsymDPOP and AsymDPOP-TSPS-
MBES(kp, ke) on random ADCOPs (6 ≤ |A| ≤ 14, |Di| = 8 and p = 0.4)

the number of its separators but also the number of its non-eliminated descen-
dants as shown in Theorem 1. On the other hand, this phenomenon verifies
that TSPS can reduce the huge computation overheads of AsymDPOP by
avoiding unnecessary joint operations. In more detail, when solving the prob-
lems with 8 agents, the maximal dimension size of AsymDPOP is 6 and that
of AsymDPOP-TSPS-MBES (kp = ∞) is just 4, as shown in Fig. 6(c). Fur-
ther, with the decrease of kp, more joint operations are discarded and thus
the dimension size of each utility table becomes smaller. It is worth noting
that a small kp can greatly improve the performance of AsymDPOP-TSPS-
MBES but may lead to a high privacy loss as shown in Fig. 13(c). As for
MBES, AsymDPOP-TSPS-MBES with a small ke reduces NCLOs but pro-
duces larger intermediate utility tables, which indicates the necessity of the
tradeoff. Besides, the performance of MBES dramatically degenerates when
combined with TSPS given a larger kp. That is because the utility tables con-
tain more dimensions in the scenario, and a utility table would be traversed
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Fig. 7: Performance comparison for RMB-AsymDPOP(kmb) and RMB-
AsymDPOP-TSPS(kp, kmb) on random ADCOPs (6 ≤ |A| ≤ 14, |Di| = 8
and p = 0.4)

more frequently when performing sequential variable eliminations. Thus, we
set kp = 2 and ke = 1 for AsymDPOP-TSPS-MBES in the comparison exper-
iments of Sect. 8.4.

To analyze how the parameters for the memory-bounded algorithms (i.e.,
kmb for RMB-AsymDPOP and kp and kmb for RMB-AsymDPOP-TSPS) affect
their performance, we vary kmb from 3 to 5 and kp from 2 to 3, and benchmark
them on the above configuration. Figure 7 shows the experimental results. It
can be seen that RMB-AsymDPOP cannot solve the problems with more than
10 agents. Once combining RMB-AsymDPOP with TSPS, the scalability and
performance have been improved dramatically. Specifically, when solving the
problems with 10 agents, the network load and NCLOs of RMB-AsymDPOP
are 18,000 and 110 times higher than that of RMB-AsymDPOP-TSPS, re-
spectively. Moreover, RMB-AsymDPOP-TSPS with kp = 2 can solve all the
problems. Additionally, it can be concluded from the figure that a larger kmb

can enhance the performance of our algorithms on all evaluation metrics. This
indicates that a greater memory budget results in fewer CC nodes and com-
munication overheads. Therefore, we set kmb = 5 for RMB-AsymDPOP, and
kp = 2 and kmb = 5 for RMB-AsymDPOP-TSPS in the comparison experi-
ments of Sect. 8.4.

8.4 Performance comparisons: AsymDPOP, its variants and its competitors

Figure 8 presents the comparison results on the configuration of Sect. 8.3. It
can be observed that AsymDPOP can only solve the problems with 6 agents.
The algorithm cannot solve the problems with more than 10 agents, even when
combined with TSPS and MBES. That is because the memory consumption



Title Suppressed Due to Excessive Length 37

6 8 10 12 14
# of Agents

101

102

103

104

105

N
et

w
or

k 
Lo

ad
 (

K
B

)

(a) Network Load

6 8 10 12 14
# of Agents

104

106

108

N
C

LO
s

ATWB
SyncABB-1ph
AsymPT-FB
PT-ISABB
PEAV DPOP
AsymDPOP
AsymDPOP-TSPS-MBES
RMB-AsymDPOP
RMB-AsymDPOP-TSPS

(b) NCLOs

Fig. 8: Performance comparison on random ADCOPs (6 ≤ |A| ≤ 14, |Di| = 8
and p = 0.4)

of AsymDPOP and AsymDPOP-TSPS-MBES exceeds the limit when han-
dling larger problems. To be precise, the maximal dimension size of AsymD-
POP when solving the problems with 8 agents and the one of AsymDPOP-
TSPS-MBES when dealing with the problems with 12 agents are both 6,
which is greater than the memory constraint (i.e., kmb = 5), as shown in
Fig. 6(c). This phenomenon states that the memory consumption of AsymD-
POP even when combined with TSPS is exponential, as shown in Theorem
2. Their scalability is improved once combined with the memory-bounded in-
ference, which demonstrates the indispensability of RMB-AsymDPOP and
RMB-AsymDPOP-TSPS under the limited memory condition. Furthermore,
compared to the search-based solvers, the proposed algorithms with TSPS
exhibit great superiorities in terms of the network load. It is because the
search-based algorithms use a message-passing manner to explicitly exhaust
the solution space, which is quite expensive, especially when solving problems
with numerous agents. In contrast, the proposed algorithms like AsymDPOP-
TSPS-MBES and RMB-AsymDPOP-TSPS incur fewer communication over-
heads since they follow an inference protocol. On the other hand, although
PEAV DPOP also uses the inference protocol, it still suffers from a severe scal-
ability problem and can only solve the problems with 6 agents. That is because
DPOP with the PEAV formulation introduces the mirror variables to enforce
the consistency of assignment to all variables, which significantly increases the
complexity. More specifically, each utility table in PEAV DPOP contains the
dimensions of mirror variables, which markedly increases the memory con-
sumption.

Figure 9 presents the performance comparison under different densities.
Specifically, we consider the random ADCOPs with the number of agents of
12, the domain size of 8, and the density varying from 0.2 to 0.6. We do not
include SynchABB-1ph and AWTB since they cannot solve all the problems
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Fig. 9: Performance comparison on random ADCOPs (|A| = 12, |Di| = 8 and
0.2 ≤ p ≤ 0.6)

within 30 minutes, and PEAV DPOP because it cannot solve the problems
under the limited memory even when the density is 0.2. It can be concluded
from the figure that AsymDPOP with TSPS (i.e., AsymDPOP-TSPS-MBES
and RMB-AsymDPOP-TSPS) incurs significantly fewer communication over-
heads, which demonstrates the merit of avoiding unnecessary joint operations.
Besides, it is interesting to find that compared to the one of AsymDPOP
without TSPS (i.e., AsymDPOP and RMB-AsymDPOP), the network load of
AsymDPOP with TSPS increases much slowly. That is because as the density
increases, eliminations are more likely to happen at the top of a pseudo tree.
On the other hand, since unnecessary joint operations are avoided in TSPS,
eliminations are the major source of the dimension increase. As a result, agents
propagate low dimension utility tables most of the time.

Figure 10 presents the performance comparison under different domain
sizes. Specifically, we consider the random ADCOPs with the number of agents
of 8, the density of 0.4, and the domain size varying from 4 to 14. It can be
observed that the communication and computation overheads of all the algo-
rithms increase exponentially as the domain size grows. Among them, AsymD-
POP cannot solve the problems with a domain size greater than 8. This is due
to the fact that the maximal message size in inference-based complete algo-
rithms is exponential based on the domain size. As a result, it incurs huge
coordination overheads and runs out of memory when facing complex prob-
lems. Once incorporating TSPS, its scalability and performance are greatly
improved. Besides, AsymDPOP with TSPS also exhibits great advantages
over state-of-the-art search-based algorithms on the network load, although
the algorithm always generates larger messages than the search-based solvers.
More specifically, the network load required by AsymDPOP-TSPS-MBES is
at most five percent of the one produced by PT-ISABB. These phenomenons
demonstrate the necessity of TSPS for the proposed algorithms. Besides, we
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Fig. 10: Performance comparison on random ADCOPs (|A| = 8, 4 ≤ |Di| ≤ 14
and p = 0.4)
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Fig. 11: Performance comparison on scale-free networks (10 ≤ |A| ≤ 14, |Di| =
8, m0 = 8 and m1 = 4)

can see that the network load of AsymDPOP-TSPS-MBES is approximately
the same as that of its memory-bounded counterpart without MBES. The rea-
son could be that the utility tables propagated by these two algorithms are the
same. In fact, the average induced width in the experiment is only 3, which is
smaller than the memory constraint (i.e., kmb ≥ 4).

Figure 11 shows the performance comparison on the scale-free networks
with different agent numbers. PEAV DPOP is not included since it cannot
solve the problems under the limited memory budget even when |A| = 10. It
can be seen from the figure that AsymDPOP and its memory-bounded ver-
sion (i.e., RMB-AsymDPOP) suffer from a serious scalability problem. Con-
cretely, AsymDPOP and RMB-AsymDPOP can only solve the problems when
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Fig. 12: Performance comparison on random sensor networks (9 ≤ |A| ≤ 36
and |Di| = 8)

|A| ≤ 11. Besides, they are inferior to the latest search-based algorithms like
AsymPT-FB and PT-ISABB on all the evaluation metrics. That is because
AsymDPOP requires tremendous communication and computation overheads,
as stated in Theorem 1. Once incorporating TSPS, their scalability and per-
formance have improved. Specifically, AsymDPOP-TSPS-MBES can scale up
to the problems with 12 agents and RMB-AsymDPOP-TSPS can solve all the
problems in this configuration. When solving the problems with 11 agents, the
network load and NCLOs of AsymDPOP without TSPS are about 6,300 and
180 times higher than that of AsymDPOP with TSPS, respectively. These ex-
perimental results demonstrate the indispensability of TSPS for the proposed
methods when handling structured problems.

Figure 12 presents the performance comparison on the random sensor net-
works with different sensor numbers. In this configuration, each sensor only
shares constraints with its four neighbor sensors, therefore the density of the
problems decreases with the increase of the number of sensors. However, as
the number of sensors grows, the search space becomes larger and thus both
the communication and computation overheads of all the algorithms increase
exponentially as shown in the figure. Among them, our algorithms with TSPS
exhibit significant superiority on all the metrics, which indicates the merit
of the dynamic programming strategy combined with the table set propaga-
tion scheme for ADCOPs when the density is relatively low. Without TSPS,
their scalability declines dramatically. For example, AsymDPOP and RMB-
AsymDPOP cannot solve the problems with more than 9 sensors. These results
indicate that TSPS is indispensable for AsymDPOP and RMB-AsymDPOP
when dealing with real-world problems.

In the last experiment, we consider the privacy loss of each algorithm when
solving Asymmetric MaxDCSPs with different tightness. For the proposed al-
gorithms, we only consider AsymDPOP-TSPS-MBES with ke = 1 for MBES,
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Fig. 13: Performance comparison on Asymmetric MaxDCSPs (|A| = 10, |Di| =
10, p1 = 0.4 and 0.1 ≤ p2 ≤ 0.8)

since the propagated utility tables are only related to the value of kp in TSPS.
We do not include AsymDPOP since it runs out of memory on all the prob-
lems, RMB-AsymDPOP because it cannot solve the problems within 30 min-
utes, and RMB-AsymDPOP-TSPS since it incurs the same privacy loss with
AsymDPOP-TSPS-MBES given a fixed kp. Figure 13 presents the experimen-
tal results. It can be seen that all the search-based algorithms suffer from
exponential overheads, but AsymDPOP-TSPS-MBES seems to be unaffected.
This is because all the search-based complete algorithms need to exhaust the
solution space by a systematic search, and it is becoming more difficult for
them to prune the solution space as the tightness grows. However, the perfor-
mance of AsymDPOP-TSPS-MBES does not depend on constraint tightness,
as it uses a dynamic programming paradigm to solve the problems. As for the
privacy loss, it can be concluded from Fig. 13(c) that as the tightness grows,
the search-based algorithms leak more privacy while the inference-based al-
gorithms leak less privacy. It is because these search-based algorithms mainly
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rely on a direct disclosure mechanism to aggregate the private costs and need
to traverse more proportions of the search space when solving the problems
with high tightness. In contrast, the inference-based algorithms accumulate
utility through the pseudo tree, and a variable xi could infer the private costs
of its (pseudo) child xc when the received utility table involving both xi and xc
contains zero entries or is a binary table which is not a result of eliminations.
Thus, AsymDPOP-TSPS-MBES (kp = 2) leaks almost half of privacy. On the
other hand, AsymDPOP-TSPS-MBES (kp ≥ 3) incurs much lower privacy
loss when solving the high tightness problems, since the number of assignment
combinations with non-zero cost grows as the tightness increases.

9 Conclusion

In this paper, we present the first inference-based complete algorithm for AD-
COPs, namely AsymDPOP, by using generalized non-local elimination which
facilitates the aggregation of utility in an asymmetric environment. To en-
hance the scalability of AsymDPOP, we introduce a table-set propagation
scheme (TSPS) to reduce the memory consumption and a mini-batch elim-
ination scheme (MBES) to reduce the computation operations in the utility
propagation phase. Furthermore, to ensure the proposed algorithms can still
scale up to large-scale problems under the limited memory budget, we adapt
the memory-bounded inference to AsymDPOP and AsymDPOP-TSPS, where
a branch-independent distributed enumeration mechanism and a two-phase
utility set propagation scheme are introduced to reduce the redundancy in
memory-bounded inference. Finally, we theoretically show the complexity of
the proposed AsymDPOP and AsymDPOP-TSPS. And our empirical evalu-
ation demonstrates the superiority of AsymDPOP and its variants over the
state-of-the-art as well as the vanilla DPOP with PEAV formulation. Addi-
tionally, when incorporating TSPS and the memory-bounded inference, the
scalability and performance of AsymDPOP are dramatically improved under
the limited memory cases.

In the future, we will try to improve the proposed algorithms in the follow-
ing two aspects. First, we plan to investigate the possibility of providing strong
privacy guarantees on the proposed algorithms through cryptographic tech-
niques (Léauté and Faltings, 2013; Grinshpoun and Tassa, 2016; Tassa et al.,
2017; Grinshpoun et al., 2019). Then, we will probe into combing GNLE with
other dynamic programming techniques (e.g., function filtering (Sánchez-Fibla
et al., 2005; Brito and Meseguer, 2010)) to solve larger-scale ADCOPs.
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Cycle xi xc ∈ C(xi) Bc
i EV c

i uc
i→p AP (xi) ⊗

xj∈AP (xi)
fij ui→p

1
x3 − − − − {x2} f32 u3→2 = f32

x4 − − − − {x1, x2} f41 ⊗ f42 u4→2 = f41 ⊗ f42

2 x2

x3 {x3} {x3} min
x3

(f32 ⊗ f23)
{x1} f21

u2→1 = (min
x3

(f32 ⊗ f23))

⊗(f41 ⊗ f42 ⊗ f24)⊗ f21x4 {x4} ∅ f41 ⊗ f42 ⊗ f24

3 x1 x2 {x2, x4} {x2, x4}

min
{x2,x4}

((f12 ⊗ f14)⊗

(min
x3

(f32 ⊗ f23)⊗ f41

⊗f42 ⊗ f24 ⊗ f21)

− − −

Fig. 14: The utility tables propagated in the utility propagation phase of
AsymDPOP

A Appendix

In this subsection, we will take the variable x2 in Fig. 3 as an example to show how to
compute the utility table propagated by a variable xi (i.e., ui→p) in AsymDPOP, and the
utility table set propagated by xi (i.e., Ui→p) in AsymDPOP-TSPS when kp = 3. We do
not give the full trace of the execution of these algorithms since the other variables do a
similar computation like x2. The utility tables propagated in the utility propagation phase
of AsymDPOP and the utility table set propagated in the utility set propagation phase of
AsymDPOP-TSPS are shown in Fig. 14 and Fig. 15, respectively.

A.1 An example for AsymDPOP

When receiving the utility tables (i.e., u3→2 = f32 and u4→2 = f41 ⊗ f42) from x3 and x4,
x2 computes the utility table u2→1 (according to Eq. (6)) which is the join of the result of
handling all the received utility tables (i.e., u3

2→1 and u4
2→1) and its local utility table (i.e.,

⊗xj∈AP (x2)f2j). That is,

u2→1 = u3
2→1 ⊗ u4

2→1 ⊗
(

⊗
xj∈AP (x2)

f2j

)

where u3
2→1 and u4

2→1 are calculated by Eq. (7). Specifically, for computing u3
2→1, x2 first

joins the received utility table u3→2 = f32 with its local utility table ⊗xj∈B3
2
f2j = f23, and

then eliminates all the variables in EV 3
2 = {x3} from the joint utility table. That is,

u3
2→1 = min

EV 3
2

((
⊗

xj∈B3
2

f2j

)
⊗ u3→2

)

= min
x3

((
⊗

xj∈{x3}
f2j

)
⊗ f32

)
= min

x3
(f32 ⊗ f23)

Similarly, we have u4
2→1 = f41 ⊗ f42 ⊗ f24, and thus u2→1 = (minx3 (f32 ⊗ f23)) ⊗ (f41 ⊗

f42 ⊗ f24)⊗ f21 since AP (x2) = {x1}.
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Cycle xi xc ∈ C(xi) Bc
i EV c

i Uc
i→p AP (xi) U i

i→p Ui→p

1
x3 − − − − {x2} {f32} U3→2 = {f32}

x4 − − − − {x1, x2} {f41 ⊗ f42} U4→2 = {f41 ⊗ f42}

2 x2

x3 {x3} {x3} {min
x3

(f32 ⊗ f23)}
{x1} {f21}

U2→1 = {min
x3

(f32 ⊗ f23),

f41 ⊗ f42 ⊗ f24, f21}x4 {x4} ∅ {f41 ⊗ f42 ⊗ f24}

3 x1 x2 {x2, x4} {x2, x4}

{ min
{x2,x4}

((f12 ⊗ f14)⊗

(min
x3

(f32 ⊗ f23)⊗ f41

⊗f42 ⊗ f24 ⊗ f21)}

− − −

Fig. 15: The utility table sets propagated in the utility set propagation phase
of AsymDPOP-TSPS

A.2 An example for AsymDPOP-TSPS

After the utility table sets (i.e., U3→2 = {f32} and U4→2 = {f41 ⊗ f42}) from its child x3

and x4 have arrived, x2 calculates the utility table set U2→1 (according to Eq. (10)) which
consists of the result of handling all the received utility table sets (i.e., U3

2→1 and U4
2→1)

and its local utility table set (i.e., U2
2→1). That is,

U2→1 = U3
2→1 ∪ U4

2→1 ∪ U2
2→1

where U3
2→1 and U4

2→1 are calculated by Eq. (12). Concretely, for obtaining U3
2→1, x2 first

joins the received utility set U3→2 = {f32} with its constraint functions related to B3
2 (i.e.,

∪xj∈B3
2
{f2j} = {f23}), and then eliminates EV 3

2 = {x3} from the set joint utility tables

related to EV 3
2 . That is,

U3
2→1 = Elim

(
JoinSet

(
∪

xj∈B3
2

{f2j}, U3→2

)
, EV 3

2

)

= Elim

(
JoinSet

(
∪

xj∈{x3}
{f2j}, {f32}

)
, {x3}

)
= Elim ({f32 ⊗ f23}, {x3})
= {min

x3
(f32 ⊗ f23)}

Similarly, we have U4
2→1 = {f41 ⊗ f42 ⊗ f24}. And U2

2→1 is obtained by Eq. (11). In
Eq. (11), x2 first groups its constraint functions related to AP (xi) (i.e., ∪xj∈AP (x2){f2j} =

{f21}) into a function set as the dimension of {f21} is no greater than kp = 3. Afterward,
x2 obtains a 2-ary local utility table f21 by joining the functions in {f21}. That is,

U2
2→1 = PartF

(
∪

xj∈AP (x2)
{f2j} , kp

)

= PartF

(
∪

xj∈{x1}
{f2j} , 3

)
= {f21}

Thus, we have U2→1 = {minx3 (f32 ⊗ f23) , f41 ⊗ f42 ⊗ f24, f21}.


