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Abstract

Distributed Constraint Optimization Problems (DCOPs) are
an important subclass of combinatorial optimization prob-
lems, where information and controls are distributed among
multiple autonomous agents. Previously, Machine Learning
(ML) has been largely applied to solve combinatorial op-
timization problems by learning effective heuristics. How-
ever, existing ML-based heuristic methods are often not gen-
eralizable to different search algorithms. Most importantly,
these methods usually require full knowledge about the prob-
lems to be solved, which are not suitable for distributed set-
tings where centralization is not realistic due to geograph-
ical limitations or privacy concerns. To address the gener-
ality issue, we propose a novel directed acyclic graph rep-
resentation schema for DCOPs and leverage the Graph At-
tention Networks (GATs) to embed graph representations.
Our model, GAT-PCM, is then pretrained with optimally la-
belled data in an offline manner, so as to construct effec-
tive heuristics to boost a broad range of DCOP algorithms
where evaluating the quality of a partial assignment is crit-
ical, such as local search or backtracking search. Further-
more, to enable decentralized model inference, we propose
a distributed embedding schema of GAT-PCM where each
agent exchanges only embedded vectors, and show its sound-
ness and complexity. Finally, we demonstrate the effective-
ness of our model by combining it with a local search or
a backtracking search algorithm. Extensive empirical eval-
uations indicate that the GAT-PCM-boosted algorithms sig-
nificantly outperform the state-of-the-art methods in vari-
ous benchmarks. Our pretrained cost model is available at
https://github.com/dyc941126/GAT-PCM.

Introduction
As a fundamental formalism in multi-agent systems, Dis-
tributed Constraint Optimization Problems (DCOPs) (Modi
et al. 2005) capture the essentials of cooperative distributed
problem solving and have been successfully applied to
model the problems in many real-world domains like radio
channel allocation (Monteiro et al. 2012), vessel navigation
(Hirayama et al. 2019), and smart grid (Fioretto et al. 2017).

Over the past two decades, numerous algorithms have
been proposed to solve DCOPs and can be generally classi-
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fied as complete and incomplete algorithms. Complete algo-
rithms aim to exhaust the search space and find the optimal
solution by either distributed backtracking search (Hirayama
and Yokoo 1997; Modi et al. 2005; Litov and Meisels 2017;
Yeoh, Felner, and Koenig 2010) or dynamic-programming
(Chen et al. 2020; Petcu and Faltings 2005, 2007). How-
ever, complete algorithms scale poorly and are unsuitable
for large real-world applications. Therefore, considerable re-
search efforts have been devoted to develop incomplete al-
gorithms that trade the solution quality for smaller com-
putational overheads, including local search (Maheswaran,
Pearce, and Tambe 2004; Okamoto, Zivan, and Nahon 2016;
Zhang et al. 2005), belief propagation (Cohen, Galiki, and
Zivan 2020; Farinelli et al. 2008; Rogers et al. 2011; Zivan
et al. 2017; Chen et al. 2018) and sampling (Nguyen et al.
2019; Ottens, Dimitrakakis, and Faltings 2017).

However, the existing DCOP algorithms usually rely on
handcrafted heuristics which need expertise to tune for dif-
ferent settings. In contrast, Machine Learning (ML) based
techniques learn effective heuristics for existing methods au-
tomatically (Bengio, Lodi, and Prouvost 2021; Gasse et al.
2019; Lederman et al. 2020), achieving state-of-the-art per-
formance in various challenging problems like Mixed Inte-
ger Programming (MIP), Capacitated Vehicle Routing Prob-
lems (CVRPs), and Boolean Satisfiability Problems (SATs).
Unfortunately, these methods are often not generalizable to
different search algorithms. Most importantly, many of these
methods usually require the full knowledge about the prob-
lems to be solved, making them unsuitable for a distributed
setting where centralization is not realistic due to geograph-
ical limitations or privacy concerns.

Therefore, we develop the first general-purpose ML
model, named GAT-PCM, to generate effective heuristics for
a wide range of DCOP algorithms and propose a distributed
embedding schema of GAT-PCM for decentralized model
inference. Specifically, we make the following key contribu-
tions: (1) We propose a novel directed tripartite graph repre-
sentation based on microstructure (Jégou 1993) to encode a
partially instantiated DCOP instance and use Graph Atten-
tion Networks (GATs) (Vaswani et al. 2017) to learn gener-
alizable embeddings. (2) Instead of generating heuristics for
a particular algorithm, GAT-PCM predicts the optimal cost
of a target assignment given a partial assignment, such that
it can be applied to boost the performance of a wide range



of DCOP algorithms where evaluating the quality of an as-
signment is critical. To this end, we pretrain our model on a
dataset where DCOP instances are sampled from a problem
distribution, partial assignments are constructed according
to pseudo trees, and cost labels are generated by a complete
algorithm. (3) We propose a Distributed Embedding Schema
(DES) to perform decentralized model inference without
disclosing local constraints, where each agent exchanges
only the embedded vectors via localized communication. We
also theoretically show the correctness and complexity of
DES. (4) As a case study, we develop two efficient heuristics
for DLNS (Hoang et al. 2018) and backtracking search for
DCOPs based on GAT-PCM, respectively. Specifically, by
greedily constructing a solfution, our GAT-PCM can serve
as a subroutine of DLNS to repair assignments. Besides,
the predicted cost of each assignment is used as a criterion
for domain ordering in backtracking search. (5) Extensive
empirical evaluations indicate that GAT-PCM-boosted algo-
rithms significantly outperform the state-of-the-art methods
in various standard benchmarks.

Related Work
There is an increasing interest of applying neural networks
to solve SAT problems in recent years. Selsam et al. (2019)
proposed NeuroSAT, a message passing neural network built
upon LSTMs (Hochreiter and Schmidhuber 1997) to predict
the satisfiability of a SAT and further decode the satisfy-
ing assignments. Yolcu and Póczos (2019) proposed to use
Graph Neural Networks (GNNs) to encode a SAT and RE-
INFORCE (Williams 1992) to learn local search heuristics.
Similarly, Kurin et al. (2020) proposed to learn branching
heuristics for a CDCL solver (Eén and Sörensson 2003) us-
ing GNNs and DQN (Mnih et al. 2015). Beside boolean for-
mulas, Xu et al. (2018) proposed to use CNNs (LeCun et al.
1989) to predict the satisfiability of a general Constraint Sat-
isfaction Problem (CSP). However, all of these methods re-
quire the total knowledge of a problem, making them un-
suitable for distributed settings. Differently, our method uses
an efficient distributed embedding schema to cooperatively
compute the embeddings without disclosing constraints.

Very recently, there are two concurrent work (Deng et al.
2021; Razeghi et al. 2021) which uses Multi-layer Percep-
trons (MLPs) to parameterize the high-dimensional data
in traditional constraint reasoning techniques, e.g., Bucket
Elimination (Dechter 1998). Unfortunately, they follow an
online learning strategy, which removes the most attractive
feature of generalizing to new instances offered by neural
networks. As a result, they require a significantly long run-
time in order to train the MLPs. In contrast, we aim to de-
velop an ML model for DCOPs which is supervisely pre-
trained with large-scale datasets beforehand. When applying
the model to an instance, we just need several steps of model
inference, which substantially reduces the overall overheads.

Backgrounds
In this section, we present preliminaries including DCOPs,
GATs and pretrained models.

Distributed Constraint Optimization Problems A Dis-
tributed Constraint Optimization Problem (DCOP) (Modi
et al. 2005) can be defined by a tuple 〈I,X,D, F 〉 where
I = {1, . . . , |I|} is the set of agents, X = {x1, . . . , x|X|}
is the set of variables, D = {D1, . . . , D|X|} is the set of
discrete domains and F = {f1, . . . , f|F |} is the set of con-
straint functions. Each variable xi takes a value from its
domain Di and each function fi : Di1 × · · · × Dik →
R≥0 defines the cost for each possible combination of
Di1 , . . . , Dik . Finally, the objective is to find a joint assign-
mentX ∈ D1×· · ·×D|X| such that the following total cost
is minimized:

minX
∑

fi∈F
fi(X). (1)

For the sake of simplicity, we follow the common assump-
tions that each agent only controls a variable (i.e., |I| = |X|)
and all constraints are binary (i.e., fij : Di × Dj →
R≥0,∀fij ∈ F ). Therefore, the term “agent” and “variable”
can be used interchangeably and a DCOP can be visualized
by a constraint graph in which vertices and edges represent
the variables and constraints of the DCOP, respectively.

Graph Attention Networks Graph attention networks
(GATs) (Veličković et al. 2017) are constructed by stack-
ing a number of graph attention layers in which nodes are
able to attend over their neighborhoods’ features via the
self-attention mechanism. Specifically, the attention coeffi-
cient between every pair of neighbor nodes is computed as
eij = a(Whi,Whj), where hi, hj ∈ Rd are node fea-
tures, W ∈ Rd×d is a weight matrix, and a is single-layer
feed-forward neural network. Then the attention weight αij
for nodes j ∈ Ni is computed as αij =

exp(eij)∑
k∈Ni

exp(eik) ,

where Ni is the neighborhood of node vi in the graph (in-
cluding vi). At last, node vi’s feature h′i is updated as h′i =
g(
∑
j∈Ni

αijWhj), where g is some nonlinear function
such as the sigmoid. Multi-head attention (Vaswani et al.
2017) is also used where K independent attention mecha-
nisms are executed and their feature vectors are averaged as
h′i = g( 1

K

∑K
k=1

∑
j∈Ni

αkijW
khj).

Pretrained Models The idea behind pretrained models is
to first pretrain the models using large-scale datasets be-
forehand, then apply the models in downstream tasks to
achieve state-of-the-art results. Beside significantly reducing
the training overhead, pretrained models also offer substan-
tial performance improvement over learning from scratch,
leading to great successes in natural language processing
(Brown et al. 2020; Devlin et al. 2018) and computer vision
(He et al. 2016; Krizhevsky, Sutskever, and Hinton 2017;
Simonyan and Zisserman 2014).

In this work, we aim to develop the first effective and
general-purpose pretrained model for DCOPs. In particular,
we are interested in training a cost model Mθ to predict
the optimal cost of a partially instantiated DCOP instance,
which is a core task in many DCOP algorithms:

Mθ(P, xi = di; Γ) 7→ R, (2)

where P ≡ 〈I,X,D, F 〉 is a DCOP instance, Γ is a partial
assignment, xi = di is the target assignment, and variable



 

Figure 1: An illustration of the architecture of GAT-PCM with a small DCOP instance. A DCOP instance in (a) is first trans-
formed into an equivalent microstructure G in (b), and then G is instantiated with a partial assignment Γ by removing some
nodes and edges in (c) and then further compiled to a directed tripartite graph with a given target assignment in (d) (cf. the
section “Graph Representations” for details) in (e). Finally, we use GATs to learn an embedding with supervised training (cf.
the sections “Graph Embeddings” and “Pretraining” for details).

xi does not appear in Γ. This way, our cost model can be ap-
plied to a wide range of DCOP algorithms where evaluating
the quality of an assignment is critical.

Pretrained Cost Model for DCOPs
In this section, we elaborate our pretrained cost model GAT-
PCM. We begin with illustrating the architecture of the
model in Fig. 1. We then outline the centralized pretraining
procedure for the model in Algo. 1 to learn generalizable
cost heuristics. We further propose a distributed embedding
schema for decentralized model inference in Algo. 2. Fi-
nally, we show how to use GAT-PCM to construct effective
heuristics to boost DCOP algorithms.

The architecture of our GAT-PCM is illustrated in Fig. 1.
Recall that we aim to train a model to predict the optimal
cost of a partially instantiated DCOP instance (cf. Eq. (2))
and thus, we first need to embed a partially instantiated
DCOP instance and the key is to build a suitable graph rep-
resentation for a partially instantiated DCOP instance.

Graph Representations Since DCOPs can be naturally
represented by graphs with arbitrary sizes, we resort to
GATs to learn generalizable and permutation-invariant rep-
resentation of DCOPs. To this end, we first transform a
DCOP instance P ≡ 〈I,X,D, F 〉 to a microstructure repre-
sentation (Jégou 1993) where each variable assignment cor-
responds to a vertex and the constraint cost between a pair
of vertices is represented by a weighted edge (cf. Fig. 1(b)).
After that, for each assignment xi = di in the partial assign-

ment Γ, we remove all the other variable-assignment vertices
of xi, except 〈xi, di〉, and their related edges from the mi-
crostructure (cf. Fig. 1(c)). Then the reduced microstructure
represents the partially instantiated DCOP instance w.r.t. Γ.

The reduced microstructure is further compiled into a di-
rected tripartite graph TG = 〈(VX , VC , VF ), ETG〉 which
serves as the input of our GAT-PCM model (cf. Fig. 1(d)).
Specifically, for each edge in the microstructure, we insert
a constraint-cost node vc ∈ VC which corresponds to the
constraint cost between the related pair of variable assign-
ments. For each constraint function f ∈ F , we also cre-
ate a function node vf ∈ VF in the graph, and each related
constraint-cost node will be directed to vf . Note that vf can
be regarded as the proxy of all related constraint-cost nodes.
Besides, variable-assignment nodes related to Γ will also be
removed from the tripartite graph since they are subsumed
by their related constraint-cost nodes.

Finally, we note that the loopy nature of undirected mi-
crostructure may lead to missense propagation and poten-
tially cause an oversmoothing problem (Li et al. 2019). For
example, 〈x3, R〉 should be independent of 〈x3, L〉 since
they are two different assignments of the same variable.
However, 〈x3, L〉 could indirectly influence 〈x3, R〉 through
multiple paths (e.g., 〈x3, L〉 − 〈x2, R〉 − 〈x3, R〉) when
applying GATs. Therefore, we require the tripartite graph
to be directed and acyclic such that each constraint-cost
node or variable-assignment node has a path to the tar-
get variable-assignment node. Specifically, we determine
the directions between constraint-cost nodes and variable-



assignment nodes through a two-phase procedure. First, we
build a Directed Acyclic Graph (DAG) for a constraint graph
induced by the set of unassigned variables such that every
unassigned variable has a path to the target variable. To this
end, we build a pseudo tree PT (Freuder and Quinn 1985)
with the target variable as its root and use PT as the DAG
where each node of PT will be directed to its parent or
pseudo parents. Second, for any pair of constrained vari-
ables xi and xj in the DAG, where xi is the precursor of
xj , and any related pair of variable assignments 〈xi, di〉 and
〈xj , dj〉, we set the node of 〈xi, di〉 to be the precursor of the
constraint-cost node of fij(di, dj) and set the constraint-cost
node of fij(di, dj) to be the precursor of the node of 〈xj , dj〉
in the tripartite graph. Note that constraint-cost nodes related
to a unary function will be set to be the precursor of their
corresponding variable-assignment nodes.

For space complexity, given an instance with |I| variables
and maximum domain size of d, the directed acyclic tripar-
tite graph has O(d|I|) variable-assignment nodes, O(|I|2)
function nodes and O(d2|I|2) constraint-cost nodes.

Graph Embeddings Given a directed tripartite graph rep-
resentation, we use GATs to learn an embedding with su-
pervised training (cf. Fig. 1(e)). Each node vi has a four-
dimensional initial feature vector h(0)

i ∈ H(0) where the first
three elements denote the one-hot encoding of node types
(i.e., variable-assignment nodes, constraint-cost nodes, and
function nodes) and the last element is set to be the con-
straint cost of vi if it is a constraint-cost node and otherwise,
0. The initial feature matrix H(0) is then embedded through
T layers of the GAT. Formally,

H(t) =Mθ,(t)(H
(t−1)), t = 1, . . . , T, (3)

whereH(t) is the embedding in the t-th timestep andMθ,(t)

is the t-th layer of the GAT. Finally, given a target variable-
assignment xm = dm and a partial assignment Γ, we pre-
dict the optimal cost of the partially instantiated problem in-
stance induced by Γ∪ {xm = dm} based on the embedding
of the node of vm = 〈xm, dm〉 ∈ VX and the accumulated
embedding of all function nodes of the tripartite graph as
follows:

ĉm =Mθ,(T+1)(h
(T )
m ⊕

∑
vi∈VF

h
(T )
i ), (4)

whereMθ,(T+1) is a fully-connected layer and⊕ is the con-
catenation operation.

Note that, by our construction of the tripartite graph, func-
tion nodes are the proxies of all constraint-cost nodes and
all the other variable-assignment nodes have been directed
to the target variable-assignment node. Therefore, we do
not need to include the embeddings of constraint-cost nodes
and variable-assignment nodes except the target variable-
assignment node in Eq. (4).

Pretraining Algorithm 1 sketches the training procedure.
For each epoch, we first generate labelled data (i.e., partial
assignments, target assignments and corresponding optimal
costs) in phase I and then train our model in phase II.

Algorithm 1: Offline pretraining procedure
Require: number of training epochs N , number of training itera-

tions K, problem distribution P , optimal DCOP algorithm A,
capacitated FIFO buffer B

1: for n = 1, . . . , N do
Phase I: generating labelled data

2: P ≡ 〈I,X,D, F 〉 ∼ P , PT ← build a pseudo tree for P
3: for all xi ∈ X do
4: Sep(xi)← anc. connecting xi and its desc. in PT
5: for all context Γi ∈ Πxj∈Sep(xi)Dj do
6: for all di ∈ Di do
7: P ′ ← REDUCE(P,Γi, xi = di)
8: c∗ ← A(P ′), B ← B ∪ {〈P,Γi, xi = di, c

∗〉}
Phase II: training the model

9: for k = 1, . . . ,K do
10: B ← sample a batch of data from B
11: train the modelMθ to minimize Eq. (5)

returnMθ

Specifically, we first sample a DCOP instance P from
the problem distribution P . For each target variable xi, in-
stead of randomly generating partial assignments, we build
a pseudo tree PT and use its contexts w.r.t. PT as partial
assignments (line 2-5). In this way, we avoid redundant par-
tial assignments by focusing only on the variables that are
constrained with xi or its descendants. After obtaining the
subproblem rooted at xi (cf. procedure REDUCE), we apply
any off-the-shelf optimal DCOP algorithm A to solve P ′ to
get the optimal cost c∗ (line 6-8).

Each tuple of partial assignment, target assignment, opti-
mal cost and problem instance will be stored in a capacitated
FIFO buffer B. In phase II, we uniformly sample a batch B
of data from the buffer to train our model using the mean
squared error loss:

L(θ) = 1
|B|

∑
〈P,Γ,xi=di,c∗〉∈B(Mθ(P, xi = di; Γ)− c∗)2. (5)

Distributed Embedding Schema Different from pretrain-
ing stage where the model has access to all the knowl-
edge (e.g., variables, domains, constraints, etc.) about the
instance to be solved, an agent in real-world scenarios usu-
ally can only be aware of its local problem due to privacy
concern and/or geographical limitation, posing a significant
challenge when applying our model to solve DCOPs. Also,
centralized model inference could overwhelm a single agent.
Therefore, we aim to develop a distributed schema for model
inference in which each agent only uses its local knowledge
to cooperatively compute Eq. (3) and Eq. (4).

We exploit the directed and acyclic nature of our tripar-
tite graph and propose an efficient Distributed Embedding
Schema (DES) in Algorithm 2. The general idea is that
each agent maintains the embeddings w.r.t. its local problem.
Specifically, an agent imaintains the following components:
(1) its own variable-assignment nodes and (induced) unary
constraint-cost and function nodes; (2) all function nodes
fij where xj is a successor of xi; and (3) all constraint-cost
nodes fij(di, dj) where xj is a successor of xi. Each time
the agent updates the local embeddings via a single step of
model inference after receiving the embeddings from its pre-



Algorithm 2: Distributed embedding schema for agent i
Require: trained modelMθ , precursors Pi, successors Si, target

assignment xm = dm, initial variable-assignment node feature
h
(0)
X , initial function node feature h

(0)
F , one-hot encoding for

constraint-cost node h
(0)
C

1: When INITIALIZATION:
2: Cachei ← [], H(0)

i ← empty tensor
3: for t = 1, . . . , T do Cachei[t]← empty map
4: if xi = xm then H

(0)
i ← STACK(H

(0)
i , h

(0)
X )

5: else
6: for all di ∈ Di do H

(0)
i ← STACK(H

(0)
i , h

(0)
X )

7: for all j ∈ Si do
8: H

(0)
i ← STACK(H

(0)
i , h

(0)
F )

9: for all cost value cij ∈ fij(·, ·) do
10: H

(0)
i ← STACK(H

(0)
i , h

(0)
C ⊕ cij)

11: for all j ∈ Pi do
12: for all cost value cji ∈ fji(·, ·) do
13: H

(0)
i ← STACK(H

(0)
i , h

(0)
C ⊕ cji)

14: `i ← zero vector, ti ← 1, H(ti)
i ←Mθ,(ti)(H

(ti−1)
i )

15: send H
(ti)
i [fij(·, ·)] to j, ∀j ∈ Si

16: if Pi = ∅ then
17: for ti = 2, . . . , T do
18: H(ti) ←Mθ,(ti)(H

(ti−1))
19: if ti < T then
20: send H

(ti)
i [fij(·, ·)] to j, ∀j ∈ Si

21: `i ←
∑
j∈Si

H
(T )
i [fij ], send `i to j′ ∈ Si

22: When RECEIVE embedding H̄(tj) from j ∈ Pi:
23: Cachei[tj ][j]← H̄(tj)

24: if |Cachei[ti]| = |Pi| then
25: for all j′ ∈ Pi do
26: H

(ti)
i [fij′(·, ·)]← Cache[ti][j

′]

27: ti ← ti + 1
28: H(ti) ←Mθ,(ti)(H

(ti−1))
29: if ti < T then
30: send H

(ti)
i [fij′(·, ·)] to j′, ∀j′ ∈ Si

31: else
32: `i ←

∑
j′′∈Si

H
(T )
i [fij′′ ], send `i to j′ ∈ Si

33: When RECEIVE accum. embedding `j from j ∈ Pi:
34: if xi 6= xm then
35: send `j to j′ ∈ Si
36: else
37: `i ← ADD(`i, `j)
38: if all accum. embeddings have arrived then
39: computes Eq. (6)

cursors. Taking the tripartite graph in Fig. 1(d) as an exam-
ple, x2 maintains embeddings for 〈x2, R〉, f12(R,R), f12,
f23(R,R) and f23(R,L). To update its local embeddings for
〈x2, R〉, f12(R,R) and f12, x2 only needs one step of model
inference after receiving the latest embedding of constraint-
cost nodes f23(R,R) and f23(R,L) from its precursor x3.

Next, we give details about the schema. First, we use
primitive STACK to concatenate the initial features of local
nodes1 to construct the initial embeddings H(0)

i (line 3-13).
After that, agent i computes its first round embeddings and

1We omit unary functions for simplicity.

sends the updated embeddings of constraint-cost nodes to
each of its successors (line 14-15). If agent i is a source
node, i.e., Pi = ∅, it directly updates the subsequent em-
beddings and sends the constraint-cost node embeddings at
each timestep to its successors (line 16-20) since it does not
need to wait for the embeddings from its precursors. Be-
sides, the agent also sends the local accumulated function
node embedding `i to one of its successors (line 21).

After receiving the constraint-cost node embeddings from
its precursor j, agent i temporarily stores the embeddings
to Cachei according to the timestamp tj (line 23). If all
the precursors’ constraint-cost node embeddings for the ti-
th layer have arrived, agent i updates the local embedding
H

(ti)
i with those embeddings stored in Cachei[ti] (line 24-

26). Then the agent computes the embeddings H(ti+1)
i and

sends the up-to-date embeddings to its successors (line 27-
30). If all GAT layers are exhausted, the agent computes the
local accumulated function node embedding `i and sends it
to one of its successors (line 31-32). After receiving an ac-
cumulated function-node embedding, agent i either directly
forwards the embedding to one of its successors or adds to
its own accumulated function-node embedding, depending
on whether it is the target agent (line 34-37). After received
the accumulated embedding messages of all the other agents,
the target agent m outputs the predicted optimal cost by

ĉm =Mθ,(T+1)(H
(T )
m [〈xm, dm〉]⊕ `m), (6)

where H
(T )
m [〈xm, dm〉] is the embedding for variable-

assignment node 〈xm, dm〉 in H(T )
m (line 38-39).

We now show the soundness and complexity of DES. We
first show that DES results in the same embeddings as its
centralized counterpart.
Lemma 1. In DES, each agent i with Pi 6= ∅ receives ex-
actly T − 1 constraint-cost node embedding messages from
j,∀j ∈ Pi, one for each timestep tj = 1, . . . , T − 1.

Proof. Consider the base case where all the precursors are
source i.e., Pj = ∅,∀j ∈ Pi. Since it cannot receive a em-
bedding from other agent, each precursor j sends exactly
T − 1 constraint-cost node embeddings to i, one for each
timestep tj = 1, . . . , T − 1 according to line 15, 19-20.

Assume that the lemma holds for all j ∈ Pi with Pj 6=
∅. By assumption, the condition of line 24 holds for tj =
1, . . . , T −1 and hence precursor j sends embedding to i for
tj = 2, . . . , T−1 (line 27-30). Together with the embedding
sent in line 15, each precursor j sends T − 1 constraint-cost
node embedding messages to i in total, one for each timestep
tj = 1, . . . , T − 1, which concludes the lemma.

Lemma 2. For any agent i and timestep t = 1, . . . , T ,
after performing DES, its local embeddings are the same
as the ones in H(t). I.e., H(t)

i [〈xi, di〉] = H(t)[〈xi, di〉],
H

(t)
i [fij(di, dj)] = H(t)[fij(di, dj)], H

(t)
i [fij ] =

H(t)[fij ], ∀di ∈ Di, xj ∈ Si, dj ∈ Dj .

Proof. We only show the proof for variable-assignment
nodes. Similar argument can be applied to constraint-cost
nodes and function nodes.



In the first timestep, i.e., t = 1, for each node 〈xi, di〉,
Eq. (3) computes H(1)[〈xi, di〉] based on the initial feature
H(0)[fij(di, dj)], ∀j ∈ Pi, dj ∈ Dj , which is the same as in
DES, i.e., line 11-14.

Assume that the lemma holds for t > 1. Before comput-
ing the embeddings for (t+1)-th timestep, agent imust have
received the embedding H(t)

j [fij(di, dj)], which equals to
H(t)[fij(di, dj)] according to the assumption, from j,∀j ∈
Pi, di ∈ Di, dj ∈ Dj (line 20, 30 23-26, Lemma 1).
Therefore, agent i computes H(t+1)

i [〈xi, di〉] according to
H(t)[fij(di, dj)],∀j ∈ Pi, dj ∈ Dj , which is equivalent to
Eq. (3)). Consequently, H(t+1)

i [〈xi, di〉] = H(t+1)[〈xi, di〉]
and the lemma holds by induction.

Lemma 3. For target agentm, after performing DES, `m =∑
vi∈VF

h
(T )
i .

Proof. We prove the lemma by showing each agent sends
exactly one accumulated embedding message w.r.t. its local
function nodes to one of its successors (i.e., line 21 and 32).
It is trivial for the agents without precursor since they do not
receive any message (line 28) and only send one accumu-
lated embedding message by the end of procedure INITIAL-
IZATION (line 21).

Consider an agent i with Pi 6= ∅. According to Lemma 1,
i executes line 27-32 for T − 1 times. Given the initial value
of 1 (line 14), ti will eventually equal to T , implying line 32
will be executed only once. Since it does not perform line 21,
i sends exactly one accumulated embedding message w.r.t.
its local function nodes.

Since by construction each agent in the DAG has a path
to the target agent m, all the accumulated embeddings will
be forwarded to m (line 34-37). Therefore, by Lemma 2,

`m =
∑
i∈I

∑
j∈Si

H
(T )
i [fij ] =

∑
i∈I

∑
j∈Si

H(T )[fij ].

Note that ∀fij ∈ F , it must be either the case j ∈ Si if i ≺ j
or the case i ∈ Sj if j ≺ i in the DAG. Hence,

`m =
∑
i∈I

∑
j∈Si

H(T )[fij ] =
∑
fij∈F

H(T )[fij ] =
∑
vi∈VF

h
(T )
i .

Then we show the soundness of our DES as follows:

Proposition 1. DES is sound, i.e., Eq. (6) returns the same
result as Eq. (4).

Proof. According to the Lemma 2 and Lemma 3, by the end
of DES, the target agent has the same variable-assignment
embedding and accumulated function node embedding as
the ones computed by Eq. (3). Therefore, Eq. (6) is equiva-
lent to Eq. (4).

Finally, we show the complexity of our DES as follows:

Proposition 2. Each agent in DES requires T steps of model
inference, O(|I|d2) spaces, and communicates O(T |I|d2)
information.

Proof. By line 14, 27-28 and Lemma 1, each agent performs
T times of model inference. Each agent i needs to main-
tain embedding for O(d) assignment-variable nodes (line 4-
6), O(|Si|d2) + |Pi|d2) constraint-cost nodes (line 7, 9-13),
and O(|Si|) function nodes (line 8). Since in the worst case,
the agent is constrained with all the other |I| − 1 agents,
i’s space complexity is O(|I|d2). Finally, since for each
timestep ti = 1, . . . , T − 1 agent i sends the constraint-
cost node embeddings to its successors, its communication
overhead is O(T |Si|d2) = O(T |I|d2).

GAT-PCM as Heuristics Since our model GAT-PCM pre-
dicts the optimal cost of a target assignment given a partial
assignment, it can serve as a general heuristic to boost the
performance of a wide range of DCOP algorithms where the
core operation is to evaluate the quality of an assignment.
We consider two kinds of well-known algorithms and show
how our model can boost them as follows:

• Local search. A key task in local search is to find good as-
signments for a set of variables given the other variables’
assignments. For example, in Distributed Large Neigh-
borhood Search (DLNS) (Hoang et al. 2018) , each round
a subroutine is called to solve a subproblem induced by
the destroyed variables (also called repair phase). Cur-
rently, DPOP (Petcu and Faltings 2005) is used to solve
a tree-structured relaxation of the subproblem, which ig-
nores a large proportion of constraints and thus leads to
poor performance on general problems. Instead, we use
our GAT-PCM to solve the subproblem without relax-
ation (i.e., all constraints between all pairs of destroyed
variables are included) since the overhead is polynomial
in the number of agents (cf. Proposition 2). Specifically,
for each connected subproblem, we assume a variable or-
dering (e.g., lexicographical ordering, pseudo tree). Then
we greedily assign each variable according to the costs
predicted by GAT-PCM, i.e., we select an assignment
with the smallest predicted cost for each variable.

• Backtracking search. Domain ordering is another impor-
tant task in backtracking search for DCOPs. Previously,
domain ordering utilizes local information only, e.g., pri-
oritizing the assignment with minimum conflicts w.r.t.
each unassigned variable (Frost and Dechter 1995) or
querying a lower bound lookup table. On the other hand,
our GAT-PCM offers a more general and systematic way
for domain ordering. Specifically, for an unassigned vari-
able, we could query GAT-PCM for the optimal cost of
each assignment under the current partial assignment and
give the priority to the one with minimum predicted cost.

Empirical Evaluation
In this section, we perform extensive empirical studies. We
begin with introducing the details of experiments and pre-
training stage. Then we analyze the results and demonstrate
the capability of our GAT-PCM to boost DCOP algorithms.

Benchmarks We consider four types of benchmarks in
our experiments, i.e., random DCOPs, scale-free networks,
grid networks, and weighted graph coloring problems. For
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Figure 2: Solution quality comparisons: (a) random DCOPs; (b) weighted graph coloring problems; (c) grid networks

random DCOPs and weighted graph coloring problems,
given density of p1 ∈ (0, 1), we randomly create a constraint
for a pair of variables with probability p1. For scale-free net-
works, we use the BA model (Barabási and Albert 1999)
with parameter m0 and m1 to generate constraint relations:
starting from a connected graph withm0 vertices, a new ver-
tex is connected to m1 vertices with a probability which is
proportional to the degree of each existing vertex in each
iteration. Besides, variables in a grid network are arranged
into a 2D grid, where each variable is constrained with four
neighboring variables excepts the ones located at the bound-
ary. Finally, for each constraint in random DCOPs, scale-
free networks and grid networks, we uniformly sample a cost
from [0, 100] for each pair of variable-assignments. Differ-
ently, constraints of the weighted graph coloring problems
incur a cost which is also uniformly sampled from [0, 100]
if two constrained variables have the same assignment.

Baselines We consider four types of baselines: local
search, belief propagation, region optimal method, and large
neighborhood search. We use DSA (Zhang et al. 2005) with
p = 0.8 and GDBA (Okamoto, Zivan, and Nahon 2016)
with 〈M,NM,T 〉 as two representative local search meth-
ods, Max-sum ADVP (Zivan et al. 2017) as a representa-
tive belief propagation method, RODA (Grinshpoun et al.
2019) with t = 2, k = 3 as a representative region opti-
mal method, and T-DLNS (Hoang et al. 2018) with destroy
probability p = 0.5 as a representative large neighborhood
search method.

All experiments are conducted on an Intel i9-9820X
workstation with GeForce RTX 3090 GPUs. For each data
point, we average the results over 50 instances and report
standard error of the mean (SEM) as confidence intervals.

Implementation and Hyperparameters Our GAT-PCM
model has four GAT layers (i.e., T = 4). Each layer in the
first three layers has 8 output channels and 8 heads of at-
tention, while the last layer has 16 output channels and 4
heads of attention. Each GAT layer uses ELU (Clevert, Un-
terthiner, and Hochreiter 2016) as the activation function. In
the pretraining stage, we consider a random DCOP distri-
bution with |I| ∈ [15, 30], d ∈ [3, 15] and p1 ∈ [0.1, 0.4].
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Figure 3: Memory footprint of GAT-PCM-DLNS

Finally, we use DPOP (Petcu and Faltings 2005) to generate
the optimal cost labels.

For hyperparameters, we set the batch size and the num-
ber of training epochs to be 64 and 5000, respectively. Our
model was implemented with the PyTorch Geometric frame-
work (Fey and Lenssen 2019) and the model was trained
with the Adam optimizer (Kingma and Ba 2014) using the
learning rate of 0.0001 and a 5× 10−5 weight decay ratio.

Results In the first set of experiments, we evaluate the per-
formance of our GAT-PCM when combined with the DLNS
framework, which we name it GAT-PCM-DLNS, in solv-
ing large-scale DCOPs. We run GAT-PCM-DLNS with de-
stroy probability of 0.2 for 1000 iterations and report the
normalized anytime cost (i.e., the best solution cost divided
by the number of constraints) as the result. Fig. 2 presents
the results of solution quality where all baselines run for
the same simulated runtime as GAT-PCM-DLNS. It can be
seen that DSA explores low-quality solutions since it itera-
tively approaches a Nash equilibrium, resulting in 1-opt so-
lutions similar to Max-sum ADVP. GDBA improves by in-
creasing the weights when agents get trapped in quasi-local
minima. RODA finds solutions better than 1-opt by coor-
dinating the variables in a coalition of size 3. T-DLNS, on
the other hand, tries to optimize by optimally solving a tree-
structured relaxation of the subproblem induced by the de-
stroyed variables in each round. However, T-DLNS could ig-
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Figure 4: Convergence analysis

nore a large proportion of constraints and therefore perform
poorly when solving complex problems (e.g., the problems
with more than 200 variables). Differently, our GAT-PCM-
DLNS solves the induced subproblem without relaxation,
leading to a significant improvement over the state-of-the-
arts when solving unstructured problems (i.e., Fig. 2(a-b)).
Interestingly, T-DLNS achieves the best performance when
solving small grid networks. That is because the variables in
the problem are under-constrained and T-DLNS only needs
to drop few edges to obtain a tree-structured problem. In
fact, the average degree in these problems is less than 3.8.
However, our GAT-PCM-DLNS still outperforms T-DLNS
when the grid size is higher than 14.

We display the average memory footprint per agent of
GAT-PCM-DLNS in the first set of experiments in Fig 3,
where “Conf #1” to “Conf #5” refer the growing complexity
of each experiment. Specifically, the memory overhead of
each agent consists of two parts, i.e., storing the pretrained
model and local embeddings. The former consumes about
60KB memory, while the latter requires space proportional
to the number of agents and the size of each constraint ma-
trix (cf. Prop. 2). It can be concluded that our method has
a modest memory requirement and scales up to large in-
stances well in various settings. In particular, our method
has a (nearly) constant memory footprint when solving grid
network problems since each agent is constrained with at
most four other agents regardless of the grid size.

To investigate how fast our GAT-PCM-DLNS finds a
good solution, we conduct a convergence analysis which
measures the performance in terms of simulated time (Sul-
tanik, Lass, and Regli 2008) on the problems with |I| =
1000, p1 = 0.005 and d = 3 and present the results in
Fig. 4. It can be seen that local search algorithms includ-
ing DSA and GDBA quickly converge to a poor local opti-
mum, while RODA finds a better solution in the first three
seconds. T-DLNS slowly improves the solution but is strictly
dominated by RODA. In contrast, our GAT-PCM-DLNS im-
proves much steadily, outperforming all baselines after 18
seconds.

Finally, we demonstrate the merit of our GAT-PCM in
accelerating backtracking search for random DCOPs with
p1 = 0.25 and scale-free networks with |I| = 18,m0 = 5
by conducting a case study on the symmetric version of PT-
ISABB (Deng et al. 2019) (referred as PT-ISBB) and present
the results in Fig. 5. Specifically, we set the memory bud-

18 19 20 21 22
# of variables

0

50

100

150

200

250

Si
m

ul
at

ed
 ru

nt
im

e 
(s

)

PT-ISBB
PT-ISBB-LB
PT-ISBB-GAT-PCM

(a) random DCOPs

1 2 3 4 5
m1

50

100

150

200

Si
m

ul
at

ed
 ru

nt
im

e 
(s

)

PT-ISBB
PT-ISBB-LB
PT-ISBB-GAT-PCM

(b) scale-free networks

Figure 5: Runtime comparison on the problems with d = 5

get k = 2 and compare the simulated runtime of PT-ISBB
using three domain ordering generation techniques: alpha-
betically, lower bound lookup tables (PT-ISBB-LB), and our
GAT-PCM (PT-ISBB-GAT-PCM). For PT-ISBB-GAT-PCM,
we only perform domain ordering for the variables in the
first three levels in a pseudo tree. It can be observed that the
backtracking search with alphabetic domain ordering per-
forms poorly and is dominated by the one with the lower
bound induced domain ordering in the most cases. Notably,
when solving the problems with 22 variables, PT-ISBB-LB
exhibits the worst performance, because the lower bounds
generated by approximated inference are not tight in com-
plex problems, and hence the induced domain ordering may
not prioritize promising assignments properly. On the other
hand, our GAT-PCM powered backtracking search uses the
predicted total cost of a subproblem as the criterion, result-
ing in a more efficient domain ordering and thus achieving
the best results in solving complex problems.

Conclusion
In this paper, we present GAT-PCM, the first effective and
general purpose deep pretrained model for DCOPs. We pro-
pose a novel directed acyclic graph representation schema
for DCOPs and leverage the Graph Attention Networks
(GATs) to embed our graph representations. Instead of gen-
erating heuristics for a particular algorithm, we train the
model with optimally labelled data to predict the optimal
cost of a target assignment given a partial assignment, such
that GAT-PCM can be applied to boost the performance of a
wide range of DCOP algorithms where evaluating the qual-
ity of an assignment is critical. To enable efficient graph
embedding in a distributed environment, we propose DES
to perform decentralized model inference without disclos-
ing local constraints, where each agent exchanges only the
embedded vectors via localized communication. Finally, we
develop several heuristics based on GAT-PCM to improve
local search and backtracking search algorithms. Extensive
empirical evaluations confirm the superiority of GAT-PCM
based algorithms over the state-of-the-arts.

In future, we plan to extend GAT-PCM to deal with the
problems with higher-arity constraints and hard constraints.
Besides, since agents in DES exchange the embedded vec-
tors instead of constraint costs, it is promising to extend our
methods to an asymmetric setting (Grinshpoun et al. 2013).
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